期刊论文详细信息
Journal of Translational Medicine
Future detection and monitoring of diabetes may entail analysis of both β-cell function and volume: How markers of β-cell loss may assist
Morten A Karsdal1  Kim Henriksen1  Qinlong Zheng2  Anne-Christine Bay-Jensen1  Michael Feigh1  Sara T Hjuler1  Kim V Andreassen1  Anita V Neutzsky-Wulff1 
[1] Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark;Nordic Bioscience A/S, Beijing, China
关键词: Personalized treatment;    Patient segregation;    BIPED classification;    β-cell death;    Type II diabetes mellitus;    Biomarkers;    Neo-epitope;   
Others  :  829118
DOI  :  10.1186/1479-5876-10-214
 received in 2012-06-03, accepted in 2012-10-18,  发布年份 2012
PDF
【 摘 要 】

Disease heterogeneity is as major issue in Type II Diabetes Mellitus (T2DM), and this patient inter-variability might not be sufficiently reflected by measurements of glycated haemoglobin (HbA1c).

Β-cell dysfunction and β-cell death are initiating factors in development of T2DM. In fact, β-cells are known vanish prior to the development of T2DM, and autopsy of overt T2DM patients have shown a 60% reduction in β-cell mass.

As the decline in β-cell function and mass have been proven to be pathological traits in T2DM, methods for evaluating β-cell loss is becoming of more interest. However, evaluation of β-cell death or loss is currently invasive and unattainable for the vast majority of diabetes patients. Serological markers, reflecting β-cell loss would be advantageous to detect and monitor progression of T2DM. Biomarkers with such capacities could be neo-epitopes of proteins with high β-cell specificity containing post translational modifications. Such tools may segregate T2DM patients into more appropriate treatment groups, based on their β-cell status, which is currently not possible. Presently individuals presenting with adequately elevated levels of both insulin and glucose are classified as T2DM patients, while an important subdivision of those is pending, namely those patients with sufficient β-cell capacity and those without. This may warrant two very different treatment options and patient care paths.

Serological biomarkers reflecting β-cell health status may also assist development of new drugs for T2DM and aid physicians in better characterization of individual patients and tailor individual treatments and patient care protocols.

【 授权许可】

   
2012 Neutzsky-Wulff et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140714054255970.pdf 959KB PDF download
Figure 5. 48KB Image download
Figure 4. 23KB Image download
Figure 3. 37KB Image download
Figure 2. 38KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Gerich JE: The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr Rev 1998, 19:491-503.
  • [2]Hinke SA: Finding GAD: early detection of beta-cell injury. Endocrinology 2007, 148:4568-4571.
  • [3]Daneman D: Type 1 diabetes. Lancet 2006, 367:847-858.
  • [4]Wajchenberg BL: beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 2007, 28:187-218.
  • [5]Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL: Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 2005, 54(Suppl 2):S97-S107.
  • [6]Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC: Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52:102-110.
  • [7]Meier JJ, Breuer TG, Bonadonna RC, Tannapfel A, Uhl W, Schmidt WE, Schrader H, Menge BA: Pancreatic diabetes manifests when beta cell area declines by approximately 65% in humans. Diabetologia 2012, 55:1346-1354.
  • [8]Karsdal MA, Delvin E, Christiansen C: Protein fingerprints - Relying on and understanding the information of serological protein measurements. Clin Biochem 2011, 44:1278-1279.
  • [9]Barascuk N, Veidal SS, Larsen L, Larsen DV, Larsen MR, Wang J, Zheng Q, Xing R, Cao Y, Rasmussen LM, et al.: A novel assay for extracellular matrix remodeling associated with liver fibrosis: An enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin Biochem 2010, 43:899-904.
  • [10]Barascuk N, Vassiliadis E, Larsen L, Wang J, Zheng Q, Xing R, Cao Y, Crespo C, Lapret I, Sabatini M, et al.: Development and validation of an enzyme-linked immunosorbent assay for the quantification of a specific MMP-9 mediated degradation fragment of type III collagen–A novel biomarker of atherosclerotic plaque remodeling. Clin Biochem 2011, 44:900-906.
  • [11]Henriksen K, Leeming DJ, Christiansen C, Karsdal MA: Use of bone turnover markers in clinical osteoporosis assessment in women: current issues and future options. Womens Health (Lond Engl) 2011, 7:689-698.
  • [12]Leeming DJ, Bay-Jensen AC, Vassiliadis E, Larsen MR, Henriksen K, Karsdal MA: Post-translational modifications of the extracellular matrix are key events in cancer progression: opportunities for biochemical marker development. Biomarkers 2011, 16:193-205.
  • [13]Veidal SS, Vassiliadis E, Bay-Jensen AC, Tougas G, Vainer B, Karsdal MA: Procollagen type I N-terminal propeptide (PINP) is a marker for fibrogenesis in bile duct ligation-induced fibrosis in rats. Fibrogenesis Tissue Repair 2010, 3:5. BioMed Central Full Text
  • [14]Veidal SS, Karsdal MA, Vassiliadis E, Nawrocki A, Larsen MR, Nguyen QH, Hagglund P, Luo Y, Zheng Q, Vainer B, et al.: MMP mediated degradation of type VI collagen is highly associated with liver fibrosis–identification and validation of a novel biochemical marker assay. PLoS One 2011, 6:e24753.
  • [15]Vassiliadis E, Veidal SS, Simonsen H, Larsen DV, Vainer B, Chen X, Zheng Q, Karsdal MA, Leeming DJ: Immunological detection of the type V collagen propeptide fragment, PVCP-1230, in connective tissue remodeling associated with liver fibrosis. Biomarkers 2011, 16:426-433.
  • [16]Karsdal MA, Henriksen K, Leeming DJ, Mitchell P, Duffin K, Barascuk N, Klickstein L, Aggarwal P, Nemirovskiy O, Byrjalsen I, et al.: Biochemical markers and the FDA Critical Path: how biomarkers may contribute to the understanding of pathophysiology and provide unique and necessary tools for drug development. Biomarkers 2009, 14:181-202.
  • [17]Karsdal MA, Henriksen K, Leeming DJ, Woodworth T, Vassiliadis E, Bay-Jensen AC: Novel combinations of Post-Translational Modification (PTM) neo-epitopes provide tissue-specific biochemical markers–are they the cause or the consequence of the disease? Clin Biochem 2010, 43:793-804.
  • [18]World Health Organization: Diabetes Fact sheet no 312. 2008. [ http://www.who.int/mediacentre/factsheets/fs312/en/ webcite]
  • [19]Nolan CJ, Damm P, Prentki M: Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 2011, 378:169-181.
  • [20]Gakidou E, Mallinger L, Bbott-Klafter J, Guerrero R, Villalpando S, Ridaura RL, Aekplakorn W, Naghavi M, Lim S, Lozano R, et al.: Management of diabetes and associated cardiovascular risk factors in seven countries: a comparison of data from national health examination surveys. Bull World Health Organ 2011, 89:172-183.
  • [21]Gromada J, Franklin I, Wollheim CB: Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 2007, 28:84-116.
  • [22]Meglasson MD, Matschinsky FM: Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev 1986, 2:163-214.
  • [23]In't VP, Marichal M: Microscopic anatomy of the human islet of Langerhans. Adv Exp Med Biol 2010, 654:1-19.
  • [24]Bluestone JA, Herold K, Eisenbarth G: Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010, 464:1293-1300.
  • [25]Cho N, Momose Y: Peroxisome proliferator-activated receptor gamma agonists as insulin sensitizers: from the discovery to recent progress. Curr Top Med Chem 2008, 8:1483-1507.
  • [26]Kernan WN, Inzucchi SE, Viscoli CM, Brass LM, Bravata DM, Horwitz RI: Insulin resistance and risk for stroke. Neurology 2002, 59:809-815.
  • [27]Day C: Metabolic syndrome, or What you will: definitions and epidemiology. Diab Vasc Dis Res 2007, 4:32-38.
  • [28]Wild S, Byrne CD: The role of treatment to increase HDL-cholesterol and decrease triglyceride concentrations in prevention of coronary heart disease in Type 2 diabetes. Diabet Med 2004, 21(Suppl 4):8-11.
  • [29]American Diabetes A: Standards of medical care in diabetes--2011. Diabetes Care 2011, 34(Suppl 1):11-61.
  • [30]Krishnamurti U, Steffes MW: Glycohemoglobin: a primary predictor of the development or reversal of complications of diabetes mellitus. Clin Chem 2001, 47:1157-1165.
  • [31]Leahy JJ: The mechanisms of action for treatments of type 2 diabetes. Diabetes Educ 2007, 33(Suppl 5):101S-104S.
  • [32]Hansen JB, Arkhammar PO, Bodvarsdottir TB, Wahl P: Inhibition of insulin secretion as a new drug target in the treatment of metabolic disorders. Curr Med Chem 2004, 11:1595-1615.
  • [33]Leahy JL: Beta-Cell dysfunction with chronic hyperglycemia: the ''overworked beta-cell'' hypothesis. Biabetes Revs 1996, 4:298-319.
  • [34]Holman RR: Assessing the potential for alpha-glucosidase inhibitors in prediabetic states. Diabetes Res Clin Pract 1998, 40(Suppl):S21-S25.
  • [35]Bergman RN: Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1989, 38:1512-1527.
  • [36]Krentz AJ, Patel MB, Bailey CJ: New drugs for type 2 diabetes mellitus: what is their place in therapy? Drugs 2008, 68:2131-2162.
  • [37]Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC: Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 2008, 10(Suppl 4):32-42.
  • [38]Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H: Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003, 52:581-587.
  • [39]Poitout V, Robertson RP: Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 2008, 29:351-366.
  • [40]Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ: Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 2008, 118:3378-3389.
  • [41]Robertson RP, Harmon J, Tran PO, Poitout V: Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 2004, 53(Suppl 1):S119-S124.
  • [42]Roehrich ME, Mooser V, Lenain V, Herz J, Nimpf J, Azhar S, Bideau M, Capponi A, Nicod P, Haefliger JA, et al.: Insulin-secreting beta-cell dysfunction induced by human lipoproteins. J Biol Chem 2003, 278:18368-18375.
  • [43]Hayden MR, Tyagi SC, Kerklo MM, Nicolls MR: Type 2 diabetes mellitus as a conformational disease. JOP 2005, 6:287-302.
  • [44]Butler AE, Janson J, Soeller WC, Butler PC: Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 2003, 52:2304-2314.
  • [45]Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC: The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 1999, 48:491-498.
  • [46]Westermark P, Andersson A, Westermark GT: Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 2011, 91:795-826.
  • [47]Lorenzo A, Razzaboni B, Weir GC, Yankner BA: Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 1994, 368:756-760.
  • [48]Bauer DC, Hunter DJ, Abramson SB, Attur M, Corr M, Felson D, Heinegard D, Jordan JM, Kepler TB, Lane NE, et al.: Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthr Cartil 2006, 14:723-727.
  • [49]Veidal SS, Bay-Jensen AC, Tougas G, Karsdal MA, Vainer B: Serum markers of liver fibrosis: combining the BIPED classification and the neo-epitope approach in the development of new biomarkers. Dis Markers 2010, 28:15-28.
  • [50]Coons SJ: The FDA's critical path initiative: a brief introduction. Clin Ther 2009, 31:2572-2573.
  • [51]FDA rapport; Challenges and Opportunities Report - March 2004: Challenge and Opportunity on the Critical Path to New Medical Products. http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm113411.pdf webcite]
  • [52]Biomarkers Definitions Working Group: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001, 69:89-95.
  • [53]Wolffenbuttel BH, Gomis R, Squatrito S, Jones NP, Patwardhan RN: Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in Type 2 diabetic patients. Diabet Med 2000, 17:40-47.
  • [54]Charbonnel BH, Matthews DR, Schernthaner G, Hanefeld M, Brunetti P: A long-term comparison of pioglitazone and gliclazide in patients with Type 2 diabetes mellitus: a randomized, double-blind, parallel-group comparison trial. Diabet Med 2005, 22:399-405.
  • [55]Henriksen K, Byrjalsen I, Qvist P, Beck-Nielsen H, Hansen G, Riis BJ, Perrild H, Svendsen OL, Gram J, Karsdal MA, et al.: Efficacy and safety of the PPARgamma partial agonist balaglitazone compared with pioglitazone and placebo: a phase III, randomized, parallel-group study in patients with type 2 diabetes on stable insulin therapy. Diabetes Metab Res Rev 2011, 27:392-401.
  • [56]Pratley RE, Nauck M, Bailey T, Montanya E, Cuddihy R, Filetti S, Thomsen AB, Sondergaard RE, Davies M: Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet 2010, 375:1447-1456.
  • [57]Rhee EJ, Lee WY, Yoon KH, Yoo SJ, Lee IK, Baik SH, Kim YK, Lee MK, Park KS, Park JY, et al.: A multicenter, randomized, placebo-controlled, double-blind phase II trial evaluating the optimal dose, efficacy and safety of LC 15–0444 in patients with type 2 diabetes. Diabetes Obes Metab 2010, 12:1113-1119.
  • [58]Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD: Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004, 27:2628-2635.
  • [59]United Kingdom Prospective Diabetes Study Group: United Kingdom Prospective Diabetes Study 24: a 6-year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. Ann Intern Med 1998, 128:165-175.
  • [60]American Diabetes A, American Diabetes Association: Standards of medical care in diabetes--2010. Diabetes Care 2010, 33(Suppl 1):11-61.
  • [61]Jones GR, Barker G, Goodall I, Schneider HG, Shephard MD, Twigg SM: Change of HbA1c reporting to the new SI units. Med J Aust 2011, 195:45-46.
  • [62]Steiner DF, Park SY, Stoy J, Philipson LH, Bell GI: A brief perspective on insulin production. Diabetes Obes Metab 2009, 11(Suppl 4):189-196.
  • [63]Leahy JL, Halban PA, Weir GC: Relative hypersecretion of proinsulin in rat model of NIDDM. Diabetes 1991, 40:985-989.
  • [64]Porte D Jr, Kahn SE: Hyperproinsulinemia and amyloid in NIDDM. Clues to etiology of islet beta-cell dysfunction? Diabetes 1989, 38:1333-1336.
  • [65]Mykkanen L, Zaccaro DJ, Hales CN, Festa A, Haffner SM: The relation of proinsulin and insulin to insulin sensitivity and acute insulin response in subjects with newly diagnosed type II diabetes: the Insulin Resistance Atherosclerosis Study. Diabetologia 1999, 42:1060-1066.
  • [66]Haffner SM, Mykkanen L, Valdez RA, Stern MP, Holloway DL, Monterrosa A, Bowsher RR: Disproportionately increased proinsulin levels are associated with the insulin resistance syndrome. J Clin Endocrinol Metab 1994, 79:1806-1810.
  • [67]Marques RG, Fontaine MJ, Rogers J: C-peptide: much more than a byproduct of insulin biosynthesis. Pancreas 2004, 29:231-238.
  • [68]Polonsky KS, Rubenstein AH: C-peptide as a measure of the secretion and hepatic extraction of insulin. Pitfalls and limitations. Diabetes 1984, 33:486-494.
  • [69]Wallace TM, Levy JC, Matthews DR: Use and abuse of HOMA modeling. Diabetes Care 2004, 27:1487-1495.
  • [70]Pfutzner A, Kann PH, Pfutzner AH, Kunt T, Larbig M, Weber MM, Forst T: Intact and total proinsulin: new aspects for diagnosis and treatment of type 2 diabetes mellitus and insulin resistance. Clin Lab 2004, 50:567-573.
  • [71]Pfutzner A, Pfutzner AH, Larbig M, Forst T: Role of intact proinsulin in diagnosis and treatment of type 2 diabetes mellitus. Diabetes Technol Ther 2004, 6:405-412.
  • [72]Loopstra-Masters RC, Haffner SM, Lorenzo C, Wagenknecht LE, Hanley AJ: Proinsulin-to-C-peptide ratio versus proinsulin-to-insulin ratio in the prediction of incident diabetes: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetologia 2011, 54:3047-3054.
  • [73]Hanley AJ, D'Agostino R Jr, Wagenknecht LE, Saad MF, Savage PJ, Bergman R, Haffner SM: Increased proinsulin levels and decreased acute insulin response independently predict the incidence of type 2 diabetes in the insulin resistance atherosclerosis study. Diabetes 2002, 51:1263-1270.
  • [74]Goldfine AB, Gerwien RW, Kolberg JA, O'Shea S, Hamren S, Hein GP, Xu XM, Patti ME: Biomarkers in fasting serum to estimate glucose tolerance, insulin sensitivity, and insulin secretion. Clin Chem 2011, 57:326-337.
  • [75]Kolberg JA, Jorgensen T, Gerwien RW, Hamren S, McKenna MP, Moler E, Rowe MW, Urdea MS, Xu XM, Hansen T, et al.: Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 2009, 32:1207-1212.
  • [76]Salomaa V, Havulinna A, Saarela O, Zeller T, Jousilahti P, Jula A, Muenzel T, Aromaa A, Evans A, Kuulasmaa K, et al.: Thirty-one novel biomarkers as predictors for clinically incident diabetes. PLoS One 2010, 5:e10100.
  • [77]Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, et al.: Metabolite profiles and the risk of developing diabetes. Nat Med 2011, 17:448-453.
  • [78]El-Mesallamy HO, El-Derany MO, Hamdy NM: Serum omentin-1 and chemerin levels are interrelated in patients with Type 2 diabetes mellitus with or without ischaemic heart disease. Diabet Med 2011, 28:1194-1200.
  • [79]Leeming DJ, Henriksen K, Byrjalsen I, Qvist P, Madsen SH, Garnero P, Karsdal MA: Is bone quality associated with collagen age? Osteoporos Int 2009, 20:1461-1470.
  • [80]Neutzsky-Wulff AV, Sorensen MG, Kocijancic D, Leeming DJ, Dziegiel MH, Karsdal MA, Henriksen K: Alterations in osteoclast function and phenotype induced by different inhibitors of bone resorption–implications for osteoclast quality. BMC Musculoskelet Disord 2010, 11:109. BioMed Central Full Text
  • [81]Teitelbaum SL: Bone resorption by osteoclasts. Science 2000, 289:1504-1508.
  • [82]Henriksen K, Leeming DJ, Byrjalsen I, Nielsen RH, Sorensen MG, Dziegiel MH, Martin TJ, Christiansen C, Qvist P, Karsdal MA: Osteoclasts prefer aged bone. Osteoporos Int 2007, 18:751-759.
  • [83]Bonde M, Qvist P, Fledelius C, Riis BJ, Christiansen C: Immunoassay for quantifying type I collagen degradation products in urine evaluated. Clin Chem 1994, 40:2022-2025.
  • [84]Garnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O, Qvist P, Delmas PD, Foged NT, Delaisse JM: The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res 2003, 18:859-867.
  • [85]Bonde M, Qvist P, Fledelius C, Riis BJ, Christiansen C: Applications of an enzyme immunoassay for a new marker of bone resorption (CrossLaps): follow-up on hormone replacement therapy and osteoporosis risk assessment. J Clin Endocrinol Metab 1995, 80:864-868.
  • [86]Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones NP, Aftring RP, Viberti G, et al.: Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 2010, 95:134-142.
  • [87]Newby AC: Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul Pharmacol 2012, 56:232-244.
  • [88]Tomita T: Immunocytochemical localisation of caspase-3 in pancreatic islets from type 2 diabetic subjects. Pathology 2010, 42:432-437.
  • [89]Mueller-Steiner S, Zhou Y, Arai H, Roberson ED, Sun B, Chen J, Wang X, Yu G, Esposito L, Mucke L, et al.: Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 2006, 51:703-714.
  • [90]Stutzer I, Esterhazy D, Stoffel M: The pancreatic beta cell surface proteome. Diabetologia 2012, 55:1877-1889.
  • [91]Duckworth WC, Bennett RG, Hamel FG: Insulin degradation: progress and potential. Endocr Rev 1998, 19:608-624.
  • [92]Suckow AT, Comoletti D, Waldrop MA, Mosedale M, Egodage S, Taylor P, Chessler SD: Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic beta-cells and the involvement of neuroligin in insulin secretion. Endocrinology 2008, 149:6006-6017.
  • [93]Fujita Y, Wideman RD, Asadi A, Yang GK, Baker R, Webber T, Zhang T, Wang R, Ao Z, Warnock GL, et al.: Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet alpha-cells and promotes insulin secretion. Gastroenterology 2010, 138:1966-1975.
  • [94]Holst JJ, Deacon CF, Vilsboll T, Krarup T, Madsbad S: Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol Med 2008, 14:161-168.
  • [95]Schelshorn D, Joly F, Mutel S, Hampe C, Breton B, Mutel V, Lutjens R: Lateral allosterism in the glucagon receptor family: glucagon-like Peptide 1 induces g-protein-coupled receptor heteromer formation. Mol Pharmacol 2012, 81:309-318.
  • [96]Yamada Y, Seino Y: Physiology of GIP–a lesson from GIP receptor knockout mice. Horm Metab Res 2004, 36:771-774.
  • [97]Xu G, Kaneto H, Laybutt DR, Duvivier-Kali VF, Trivedi N, Suzuma K, King GL, Weir GC, Bonner-Weir S: Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes 2007, 56:1551-1558.
  • [98]Vaziri-Sani F, Delli AJ, Elding-Larsson H, Lindblad B, Carlsson A, Forsander G, Ivarsson SA, Ludvigsson J, Marcus C, Lernmark A: A novel triple mix radiobinding assay for the three ZnT8 (ZnT8-RWQ) autoantibody variants in children with newly diagnosed diabetes. J Immunol Methods 2011, 371:25-37.
  • [99]Reijonen H, Daniels TL, Lernmark A, Nepom GT: GAD65-specific autoantibodies enhance the presentation of an immunodominant T-cell epitope from GAD65. Diabetes 2000, 49:1621-1626.
  • [100]Hoppu S, Harkonen T, Ronkainen MS, Simell S, Hekkala A, Toivonen A, Ilonen J, Simell O, Knip M: IA-2 antibody isotypes and epitope specificity during the prediabetic process in children with HLA-conferred susceptibility to type I diabetes. Clin Exp Immunol 2006, 144:59-66.
  • [101]Hawa MI, Fava D, Medici F, Deng YJ, Notkins AL, De MG, Leslie RD: Antibodies to IA-2 and GAD65 in type 1 and type 2 diabetes: isotype restriction and polyclonality. Diabetes Care 2000, 23:228-233.
  • [102]Waldrop MA, Suckow AT, Marcovina SM, Chessler SD: Release of glutamate decarboxylase-65 into the circulation by injured pancreatic islet beta-cells. Endocrinology 2007, 148:4572-4578.
  • [103]Kukor Z, Mayerle J, Kruger B, Toth M, Steed PM, Halangk W, Lerch MM, Sahin-Toth M: Presence of cathepsin B in the human pancreatic secretory pathway and its role in trypsinogen activation during hereditary pancreatitis. J Biol Chem 2002, 277:21389-21396.
  • [104]Lerch MM, Halangk W: Human pancreatitis and the role of cathepsin B. Gut 2006, 55:1228-1230.
  • [105]Moore CX, Cooper GJ: Co-secretion of amylin and insulin from cultured islet beta-cells: modulation by nutrient secretagogues, islet hormones and hypoglycemic agents. Biochem Biophys Res Commun 1991, 179:1-9.
  • [106]Bennett RG, Duckworth WC, Hamel FG: Degradation of amylin by insulin-degrading enzyme. J Biol Chem 2000, 275:36621-36625.
  • [107]Yang H, Wright JR Jr: Human beta cells are exceedingly resistant to streptozotocin in vivo. Endocrinology 2002, 143:2491-2495.
  • [108]Burgoyne RD, Morgan A: Secretory granule exocytosis. Physiol Rev 2003, 83:581-632.
  • [109]Maffei A, Liu Z, Witkowski P, Moschella F, Del PG, Liu E, Herold K, Winchester RJ, Hardy MA, Harris PE: Identification of tissue-restricted transcripts in human islets. Endocrinology 2004, 145:4513-4521.
  • [110]Mosedale M, Egodage S, Calma RC, Chi NW, Chessler SD: Neurexin-1alpha contributes to insulin-containing secretory granule docking. J Biol Chem 2012, 287:6350-6361.
  • [111]Suckow AT, Zhang C, Egodage S, Comoletti D, Taylor P, Miller MT, Sweet IR, Chessler SD: Transcellular neuroligin-2 interactions enhance insulin secretion and are integral to pancreatic beta cell function. J Biol Chem 2012, 287:19816-19826.
  文献评价指标  
  下载次数:35次 浏览次数:14次