| Journal of Nanobiotechnology | |
| Human mesenchymal stem cells labelled with dye-loaded amorphous silica nanoparticles: long-term biosafety, stemness preservation and traceability in the beating heart | |
| Claudia Giachino1  Valentina Turinetto1  Pasquale Pagliaro1  Claudia Penna1  Gianmario Martra2  Francesca Tullio1  Federico Catalano2  Lisa Accomasso1  Silvia Saviozzi1  Tânia Capelôa1  Clara Gallina1  | |
| [1] Department of Clinical and Biological Sciences, University of Turin, 10, Regione Gonzole, Orbassano, CAP 10043, TO, Italy;Department of Chemistry, Interdepartmental Centre “Nanostructured Interfaces and Surfaces”, University of Turin, 7, Via P. Giuria, Turin, CAP 10125, Italy | |
| 关键词: Heart; Stem cell tracking; Toxicity; Silica nanoparticles; Mesenchymal stem cells; | |
| Others : 1231694 DOI : 10.1186/s12951-015-0141-1 |
|
| received in 2015-09-11, accepted in 2015-10-22, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Treatment of myocardial infarction with mesenchymal stem cells (MSCs) has proven beneficial effects in both animal and clinical studies. Engineered silica nanoparticles (SiO 2 -NPs) have been extensively used as contrast agents in regenerative medicine, due to their resistance to degradation and ease of functionalization. However, there are still controversies on their effective biosafety on cellular systems. In this perspective, the aims of the present study are: 1) to deeply investigate the impact of amorphous 50 nm SiO 2 -NPs on viability and function of human bone marrow-derived MSCs (hMSCs); 2) to optimize a protocol of harmless hMSCs labelling and test its feasibility in a beating heart model.
Results
Optimal cell labelling is obtained after 16 h exposure of hMSCs to fluorescent 50 nm SiO 2 -NPs (50 µg mL −1 ); interestingly, lysosomal activation consequent to NPs storage is not associated to oxidative stress. During prolonged culture hMSCs do not undergo cyto- or genotoxicity, preserve their proliferative potential and their stemness/differentiation properties. Finally, the bright fluorescence emitted by internalized SiO 2 -NPs allows both clear visualization of hMSCs in normal and infarcted rat hearts and ultrastructural analysis of cell engraftment inside myocardial tissue.
Conclusions
Overall, 50 nm SiO 2 -NPs display elevated compatibility with hMSCs in terms of lack of cyto- and genotoxicity and maintenance of important features of these cells. The demonstrated biosafety, combined with proper cell labelling and visualization in histological sections, make these SiO 2 -NPs optimal candidates for the purpose of stem cell tracking inside heart tissue.
【 授权许可】
2015 Gallina et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20151110091700656.pdf | 2882KB | ||
| Fig.7. | 94KB | Image | |
| Fig.6. | 115KB | Image | |
| Fig.5. | 112KB | Image | |
| Fig.4. | 149KB | Image | |
| Fig.3. | 30KB | Image | |
| Fig.2. | 46KB | Image | |
| Fig.1. | 40KB | Image |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.6.
Fig.7.
【 参考文献 】
- [1]Mouquet F, Pfister O, Jain M, Oikonomopoulos A, Ngoy S, Summer R et al.. Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res. 2005; 97:1090-1092.
- [2]Leone AM, Rutella S, Bonanno G, Contemi AM, de Ritis DG, Giannico MB et al.. Endogenous G-CSF and CD34+ cell mobilization after acute myocardial infarction. Int J Cardiol. 2006; 111:202-208.
- [3]Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song Y-H et al.. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun. 2007; 354:700-706.
- [4]Leiker M, Suzuki G, Iyer VS, Canty JM, Lee T. Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant. 2008; 17:911-922.
- [5]Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP et al.. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009; 54:2277-2286.
- [6]Chullikana A, Sen Majumdar A, Gottipamula S, Krishnamurthy S, Kumar AS, Prakash VS et al.. Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction. Cytotherapy. 2015; 17:250-261.
- [7]Samper E, Diez-Juan A, Montero JA, Sepúlveda P. Cardiac cell therapy: boosting mesenchymal stem cells effects. Stem Cell Rev. 2013; 9:266-280.
- [8]Srinivas M, Aarntzen EHJG, Bulte JWM, Oyen WJ, Heerschap A, de Vries IJM et al.. Imaging of cellular therapies. Adv Drug Deliv Rev. 2010; 62:1080-1093.
- [9]Perán M, García MA, López-Ruiz E, Bustamante M, Jiménez G, Madeddu R et al.. Functionalized nanostructures with application in regenerative medicine. Int J Mol Sci. 2012; 13:3847-3886.
- [10]Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005; 113:823-839.
- [11]Huang Z, Shen Y, Sun A, Huang G, Zhu H, Huang B et al.. Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction. Stem Cell Res Ther. 2013; 4:149. BioMed Central Full Text
- [12]Collins MC, Gunst PR, Muller-Borer BJ. Functional integration of quantum dot labeled mesenchymal stem cells in a cardiac microenvironment. Methods Mol Biol. 2014; 1199:141-154.
- [13]Vivero-Escoto JL, Huxford-Phillips RC, Lin W. Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev. 2012; 41:2673-2685.
- [14]Jokerst JV, Khademi C, Gambhir SS. Intracellular aggregation of multimodal silica nanoparticles for ultrasound-guided stem cell implantation. Sci Transl Med. 2013; 5:177ra35.
- [15]Han S-M, Lee H-W, Bhang D-H, Seo K-W, Youn H-Y. Canine mesenchymal stem cells are effectively labeled with silica nanoparticles and unambiguously visualized in highly autofluorescent tissues. BMC Vet Res. 2012; 8:145. BioMed Central Full Text
- [16]Barik TK, Sahu B, Swain V. Nanosilica-from medicine to pest control. Parasitol Res. 2008; 103:253-258.
- [17]Napierska D, Thomassen LCJ, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010; 7:39. BioMed Central Full Text
- [18]Ferreira L, Karp JM, Nobre L, Langer R. New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell. 2008; 3:136-146.
- [19]Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J et al.. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale. 2015; 7:2154-2198.
- [20]Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 2005; 5:113-117.
- [21]Yao G, Wang L, Wu Y, Smith J, Xu J, Zhao W et al.. FloDots: luminescent nanoparticles. Anal Bioanal Chem. 2006; 385:518-524.
- [22]Alberto G, Miletto I, Viscardi G, Caputo G, Latterini L, Coluccia S et al.. Hybrid cyanine—silica nanoparticles : homogeneous photoemission behavior of entrapped fluorophores and consequent high brightness enhancement. J Phys Chem. 2009; 113:21048-21053.
- [23]Accomasso L, Cibrario Rocchietti E, Raimondo S, Catalano F, Alberto G, Giannitti A et al.. Fluorescent silica nanoparticles improve optical imaging of stem cells allowing direct discrimination between live and early-stage apoptotic cells. Small. 2012; 8:3192-3200.
- [24]Catalano F, Accomasso L, Alberto G, Gallina C, Raimondo S, Geuna S et al.. Factors ruling the uptake of silica nanoparticles by mesenchymal stem cells: agglomeration versus dispersions, absence versus presence of serum proteins. Small. 2015; 11:2919-2928.
- [25]Blanka HK, Catherine CB, Seher GA, Lucienne JJ. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J. 2012; 441:813-821.
- [26]Corbalan JJ, Medina C, Jacoby A, Malinski T, Radomski MW. Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects. Int J Nanomedicine. 2011; 6:2821-2835.
- [27]Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 2009; 16:1040-1052.
- [28]Valle-Prieto A, Conget PA. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 2010; 19:1885-1893.
- [29]Quintanilha LF, Takami T, Hirose Y, Fujisawa K, Murata Y, Yamamoto N et al.. Canine mesenchymal stem cells show antioxidant properties against thioacetamide-induced liver injury in vitro and in vivo. Hepatol Res. 2014; 44:E206-E217.
- [30]Song C, Song C, Tong F. Autophagy induction is a survival response against oxidative stress in bone marrow-derived mesenchymal stromal cells. Cytotherapy. 2014; 16(10):1361-1370.
- [31]Battal D, Celik A, Güler G, Aktaş A, Yildirimcan S, Ocakoglu K et al.. SiO2 Nanoparticle-induced size-dependent genotoxicity—an in vitro study using sister chromatid exchange, micronucleus and comet assay. Drug Chem Toxicol. 2015; 38(2):196-204.
- [32]Tarantini A, Lanceleur R, Mourot A, Lavault M-T, Casterou G, Jarry G et al.. Toxicity, genotoxicity and proinflammatory effects of amorphous nanosilica in the human intestinal Caco-2 cell line. Toxicol In Vitro. 2015; 29(2):398-407.
- [33]Riches LC, Lynch AM, Gooderham NJ. Early events in the mammalian response to DNA double-strand breaks. Mutagenesis. 2008; 23:331-339.
- [34]Shapero K, Fenaroli F, Lynch I, Cottell DC, Salvati A, Dawson KA. Time and space resolved uptake study of silica nanoparticles by human cells. Mol BioSyst. 2011; 7:371-378.
- [35]Ha S-W, Camalier CE, Weitzmann MN, Beck GR, Lee J-K. Long-term monitoring of the physicochemical properties of silica-based nanoparticles on the rate of endocytosis and exocytosis and consequences of cell division. Soft Mater. 2013; 11:195-203.
- [36]Soenen SJ, Manshian B, Doak SH, De Smedt SC, Braeckmans K. Fluorescent non-porous silica nanoparticles for long-term cell monitoring: cytotoxicity and particle functionality. Acta Biomater. 2013; 9:9183-9193.
- [37]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al.. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284:143-147.
- [38]Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al.. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8:315-317.
- [39]Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002; 105:93-98.
- [40]Jori FP, Napolitano MA, Melone MAB, Cipollaro M, Cascino A, Altucci L et al.. Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J Cell Biochem. 2005; 94:645-655.
- [41]Penna C, Raimondo S, Ronchi G, Rastaldo R, Mancardi D, Cappello S et al.. Early homing of adult mesenchymal stem cells in normal and infarcted isolated beating hearts. J Cell Mol Med. 2008; 12:507-521.
- [42]Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol. 2011; 50:940-950.
- [43]Edmundson M, Thanh NT, Song B. Nanoparticles based stem cell tracking in regenerative medicine. Theranostics. 2013; 3:573-582.
- [44]Li Y, Yao Y, Sheng Z, Yang Y, Ma G. Dual-modal tracking of transplanted mesenchymal stem cells after myocardial infarction. Int J Nanomedicine. 2011; 6:815-823.
- [45]Yu K-R, Lee JY, Kim H-S, Hong I-S, Choi SW, Seo Y et al.. A p38 MAPK-mediated alteration of COX-2/PGE2 regulates immunomodulatory properties in human mesenchymal stem cell aging. PLoS One. 2014; 9:e102426.
- [46]Minieri V, Saviozzi S, Gambarotta G, Lo Iacono M, Accomasso L, Cibrario Rocchietti E et al.. Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells. J Cell Mol Med. 2015; 19:734-743.
PDF