期刊论文详细信息
Journal of Animal Science and Biotechnology
The liver transcriptome of two full-sibling Songliao black pigs with extreme differences in backfat thickness
Chuduan Wang2  Zhuocheng Hou2  Zhijun Wang1  Huijie Liu2  Liwei Zhai2  Feng Zhu2  Kai Xing2 
[1] Tianjin Ninghe Primary Pig Breeding Farm, Ninghe 301500, Tianjin, China;National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, 100193 Beijing, China
关键词: RNA-Seq;    Pig;    Liver;    Backfat thickness;   
Others  :  1145126
DOI  :  10.1186/2049-1891-5-32
 received in 2014-03-30, accepted in 2014-05-27,  发布年份 2014
PDF
【 摘 要 】

Background

Fatness traits in animals are important for their growth, meat quality, reproductive performance, and immunity. The liver is the principal organ of the regulation of lipid metabolism, and this study used massive parallelized high-throughput sequencing technologies to determine the porcine liver tissue transcriptome architecture of two full-sibling Songliao black pigs harboring extremely different phenotypes of backfat thickness.

Results

The total number of reads produced for each sample was in the region of 53 million, and 8,226 novel transcripts were detected. Approximately 92 genes were differentially regulated in the liver tissue, while 31 spliced transcripts and 33 primary transcripts showed significantly differential expression between pigs with higher and lower backfat thickness. Genes that were differentially expressed were involved in the metabolism of various substances, small molecule biochemistry, and molecular transport.

Conclusions

Genes involved in the regulation of lipids could play an important role in lipid and fatty acid metabolism in the liver. These results could help us understand how liver metabolism affects the backfat thickness of pigs.

【 授权许可】

   
2014 Xing et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150331093747612.pdf 1383KB PDF download
Figure 4. 117KB Image download
Figure 3. 97KB Image download
Figure 2. 59KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Organ R: Key in regulating appetite and body weight. 2012.
  • [2]Suzuki K, Inomata K, Katoh K, Kadowaki H, Shibata T: Genetic correlations among carcass cross-sectional fat area ratios, production traits, intramuscular fat, and serum leptin concentration in Duroc pigs. J Anim Sci 2009, 87:2209-2215.
  • [3]Fontanesi L, Schiavo G, Galimberti G, Calò DG, Scotti E, Martelli PL, Buttazzoni L, Casadio R, Russo V: A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes. BMC Genomics 2012, 13:583.
  • [4]Houpt KA, Houpt TR, Pond WG: The pig as a model for the study of obesity and of control of food intake: a review. Yale J Biol Med 1979, 52:307.
  • [5]Reiter SS, Halsey CH, Stronach BM, Bartosh JL, Owsley WF, Bergen WG: Lipid metabolism related gene-expression profiling in liver, skeletal muscle and adipose tissue in crossbred Duroc and Pietrain pigs. Comp Biochem Physiol Part D Genomics Proteomics 2007, 2:200-206.
  • [6]Fam BC, Joannides CN, Andrikopoulos S: The liver: Key in regulating appetite and body weight. Adipocyte 2012, 1:259-264.
  • [7]Muñoz R, Estany J, Tor M, Doran O: Hepatic lipogenic enzyme expression in pigs is affected by selection for decreased backfat thickness at constant intramuscular fat content. Meat Sci 2013, 93:746-751.
  • [8]Nguyen P, Leray V, Diez M, Serisier S, Bloc’h JL, Siliart B, Dumon H: Liver lipid metabolism. J Anim Physiol Anim Nutr 2008, 92:272-283.
  • [9]Chen C, Ai H, Ren J, Li W, Li P, Qiao R, Ouyang J, Yang M, Ma J, Huang L: A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA sequencing. BMC Genomics 2011, 12:448.
  • [10]Ramayo-Caldas Y, Mach N, Esteve-Codina A, Corominas J, Castelló A, Ballester M, Estellé J, Ibáñez-Escriche N, Fernández AI, Pérez-Enciso M: Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition. BMC Genomics 2012, 13:547.
  • [11]Gunawan A, Sahadevan S, Cinar MU, Neuhoff C, Große-Brinkhaus C, Frieden L, Tesfaye D, Tholen E, Looft C, Wondim DS: Identification of the Novel Candidate Genes and Variants in Boar Liver Tissues with Divergent Skatole Levels Using RNA Deep Sequencing. PLoS One 2013, 8:e72298.
  • [12]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012, 7:562-578.
  • [13]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26:841-842.
  • [14]Delhomme N, Padioleau I, Furlong EE, Steinmetz LM: easyRNASeq: a bioconductor package for processing RNA-Seq data. Bioinformatics 2012, 28:2532-2533.
  • [15]Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J, Guernec G, Jagla B, Jouneau L, Laloë D, Le Gall C, Brigitte Schaëffer B, Le Crom S, Guedj MM, Jaffrézic F: A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 2013, 14:671-683.
  • [16]Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A: Differential expression in RNA-seq: a matter of depth. Genome Res 2011, 21:2213-2223.
  • [17]Tarazona S, Furió-Tarı P, Ferrer A, Conesa A: NOISeq: Differential Expression in RNA-seq. 2013.
  • [18]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
  • [19]Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C: STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013, 41:D808-D815.
  • [20]Wu J, Zhou D, Deng C, Xiong Y, Lei M, Li F, Jiang S, Zuo B, Zheng R: Expression pattern and polymorphism of three microsatellite markers in the porcine CA3 gene. Genet Sel Evol 2008, 40:227-239.
  • [21]Ousova O, Guyonnet-Duperat V, Iannuccelli N, Bidanel JP, Milan D, Genet C, Llamas B, Yerle M, Gellin J, Chardon P, Emptoz-Bonneton A, Pugeat M, Mormède P, Moisan M: Corticosteroid binding globulin: a new target for cortisol-driven obesity. Mol Endocrinol 2004, 18:1687-1696.
  • [22]Jiang YZ, Li XW, Yang GX: Sequence characterization, tissue-specific expression and polymorphism of the porcine (Sus scrofa) liver-type fatty acid binding protein gene. Yi Chuan Xue Bao 2006, 33:598-606.
  • [23]Wolfrum C, Borrmann CM, Borchers T, Spener F: Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha - and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci U S A 2001, 98:2323-2328.
  • [24]Zhao S, Ren L, Chen L, Zhang X, Cheng M, Li W, Zhang Y, Gao S: Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition. Lipids 2009, 44:1029-1037.
  • [25]Chen R, Cao Y, Ma X, Wang Y, Zhang H, Zhang W, Zhou D: Characterization of lipid metabolism-related genes in mouse fatty liver. 2012.
  • [26]Yan Q-W, Yang Q, Mody N, Graham TE, Hsu C-H, Xu Z, Houstis NE, Kahn BB, Rosen ED: The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 2007, 56:2533-2540.
  • [27]Zhang J, Wu Y, Zhang Y, LeRoith D, Bernlohr DA, Chen X: The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol Endocrinol 2008, 22:1416-1426.
  • [28]Davoli R, Gandolfi G, Braglia S, Comella M, Zambonelli P, Buttazzoni L, Russo V: New SNP of the porcine Perilipin 2 (PLIN2) gene, association with carcass traits and expression analysis in skeletal muscle. Mol Biol Rep 2011, 38:1575-1583.
  • [29]Gandolfi G, Mazzoni M, Zambonelli P, Lalatta-Costerbosa G, Tronca A, Russo V, Davoli R: Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of European cross-breed pigs with different intramuscular fat contents. Meat Sci 2011, 88:631-637.
  • [30]Lewis DF: 57 varieties: the human cytochromes P450. Pharmacogenomics 2004, 5:305-318.
  • [31]Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W: Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A 1993, 90:2160-2164.
  • [32]Ziouzenkova O, Plutzky J: Retinoid metabolism and nuclear receptor responses: New insights into coordinated regulation of the PPAR-RXR complex. FEBS Lett 2008, 582:32-38.
  • [33]Altan Ö, Pabuçcuoğlu A, Altan A, Konyalioğlu S, Bayraktar H: Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br Poultry Sci 2003, 44:545-550.
  • [34]Ingram D, Legge K: Effects of environmental temperature on food intake in growing pigs. Comp Biochem Physiol A Physiol 1974, 48:573-581.
  文献评价指标  
  下载次数:36次 浏览次数:8次