期刊论文详细信息
Journal of Neuroinflammation
Roles of NFκB-miR-29s-MMP-2 circuitry in experimental choroidal neovascularization
Shengzhou Wu1  Jia Qu1  Ge Shan2  Dongsheng Yan1  Xiaoyan Chen1  Xiaoling Liu1  Xianwei Wang1  Bing Lin1  Guibin Yin1  Jingjing Cai1 
[1] State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, People’s Republic of China;School of Life Sciences & CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui Province 230027, People’s Republic of China
关键词: Tumor necrosis factor alpha (TNFα);    microRNA-29 family (miR-29s);    Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB);    Matrix metallopeptidase-2 (MMP-2);    Choroidal neovascularization (CNV);   
Others  :  804257
DOI  :  10.1186/1742-2094-11-88
 received in 2013-12-09, accepted in 2014-05-01,  发布年份 2014
PDF
【 摘 要 】

Background

Previous reports have indicated that matrix metallopeptidase-2 (MMP-2) regulates angiogenic processes, which are involved in choroidal neovascularization (CNV). However, the regulation of MMP-2 in CNV has not been well-characterized. To gain more information about the regulation of MMP-2 in CNV, we analyzed the circuitry associated with MMP-2 regulation in a CNV model and in cell cultures, focusing on NFκB and the microRNA-29 family (miR-29s).

Methods

The CNV model was established by subjecting C57BL/6 mice to fundus photocoagulation with a krypton red laser. In choroidal-retinal pigment epithelial (RPE) tissues of the model, immunohistochemistry was used to evaluate the angiogenesis and MMP-2 expression; reverse-transcription quantitative PCR (RT-qPCR) was used to determine the levels of miR-29s; and western blot was used to analyze the protein levels of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) inhibitor, IκBα, and its phosphorylated form, phospho-IκBα. At the cellular level, RT-qPCR was used to examine the levels of miR-29s following NFκB activation by tumor necrosis factor alpha (TNFα); and western blot and luciferase assay were used to determine the regulation of MMP-2 by miR-29s in a human RPE cell line (ARPE-19) and in an umbilical vein endothelial cell line (EA hy926).

Results

MMP-2 staining was increased in the choroidal neovascular membrane of laser-treated retina. Also, the NFκB pathway was induced in choroid-RPE tissue, as evidenced by a lower protein level of IκBα and a higher level of phospho-IκBα in the tissue homogenates than in those from non-treated eyes. During the period when the NFκB pathway was induced, reduced miR-29s were detected in the choroidal-RPE tissue of the laser-treated eyes. In cultured ARPE-19 cells, TNFα decreased miR-29a, b, and c, and the effects were rescued by NFκB decoy. In ARPE-19 and EA hy926, miR-29s mimics reduced the contents of secreted MMP-2 in the culture media. We also documented that miR-29s reduced MMP-2 3’-UTR-mediated luciferase transcription.

Conclusions

The results suggest that in CNV, NFκB activation inhibits miR-29s, which may contribute to angiogenesis by up-regulating the MMP-2 protein level in RPE cells. These observations may help in developing a strategy for resolving CNV by targeting miR-29s levels.

【 授权许可】

   
2014 Cai et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708055335909.pdf 1174KB PDF download
Figure 5. 118KB Image download
Figure 4. 68KB Image download
Figure 3. 92KB Image download
Figure 2. 58KB Image download
Figure 1. 122KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Bashshur ZF, Bazarbachi A, Schakal A, Haddad ZA, El Haibi CP, Noureddin BN: Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 2006, 142:1-9.
  • [2]Hayasaka S, Uchida M, Setogawa T: Subretinal hemorrhages with or without choroidal neovascularization in the maculas of patients with pathologic myopia. Graefes Arch Clin Exp Ophthalmol 1990, 228:277-280.
  • [3]Yoshida T, Ohno-Matsui K, Ohtake Y, Takashima T, Futagami S, Baba T, Yasuzumi K, Tokoro T, Mochizuki M: Long-term visual prognosis of choroidal neovascularization in high myopia: a comparison between age groups. Ophthalmology 2002, 109:712-719.
  • [4]Kwak N, Okamoto N, Wood JM, Campochiaro PA: VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci 2000, 41:3158-3164.
  • [5]Stetler-Stevenson WG: Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 1999, 103:1237-1241.
  • [6]Wilcock DM, Morgan D, Gordon MN, Taylor TL, Ridnour LA, Wink DA, Colton CA: Activation of matrix metalloproteinases following anti-Abeta immunotherapy; implications for microhemorrhage occurrence. J Neuroinflammation 2011, 8:115. BioMed Central Full Text
  • [7]Majka S, McGuire P, Colombo S, Das A: The balance between proteinases and inhibitors in a murine model of proliferative retinopathy. Invest Ophthalmol Vis Sci 2001, 42:210-215.
  • [8]Berglin L, Sarman S, van der Ploeg I, Steen B, Ming Y, Itohara S, Seregard S, Kvanta A: Reduced choroidal neovascular membrane formation in matrix metalloproteinase-2-deficient mice. Invest Ophthalmol Vis Sci 2003, 44:403-408.
  • [9]Ohno-Matsui K, Uetama T, Yoshida T, Hayano M, Itoh T, Morita I, Mochizuki M: Reduced retinal angiogenesis in MMP-2-deficient mice. Invest Ophthalmol Vis Sci 2003, 44:5370-5375.
  • [10]Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE: Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 2000, 157:135-144.
  • [11]Hoffmann S, He S, Ehren M, Ryan SJ, Wiedemann P, Hinton DR: MMP-2 and MMP-9 secretion by RPE is stimulated by angiogenic molecules found in choroidal neovascular membranes. Retina 2006, 26:454-461.
  • [12]Chen K, Rajewsky N: The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007, 8:93-103.
  • [13]Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G: miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002, 16:720-728.
  • [14]Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 2007, 104:15805-15810.
  • [15]Fang JH, Zhou HC, Zeng C, Yang J, Liu Y, Huang X, Zhang JP, Guan XY, Zhuang SM: MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology 2011, 54:1729-1740.
  • [16]Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B: Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 2008, 105:6415-6420.
  • [17]Park SY, Lee JH, Ha M, Nam JW, Kim VN: miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 2009, 16:23-29.
  • [18]Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM, Guttridge DC: NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 2008, 14:369-381.
  • [19]Ugalde AP, Ramsay AJ, de la Rosa J, Varela I, Marino G, Cadinanos J, Lu J, Freije JM, Lopez-Otin C: Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J 2011, 30:2219-2232.
  • [20]Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E: VEGF expression in human macrophages is NF-kappaB-dependent: studies using adenoviruses expressing the endogenous NF-kappaB inhibitor IkappaBalpha and a kinase-defective form of the IkappaB kinase 2. J Cell Sci 2003, 116:665-674.
  • [21]Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ: Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001, 20:4188-4197.
  • [22]Jo N, Ogata N, Aoki M, Otsuji T, Morishita R, Kaneda Y, Matsumura M: Effective transfection of a cis element “decoy” of the nuclear factor-kappaB binding site into the experimental choroidal neovascularization. Curr Eye Res 2002, 24:465-473.
  • [23]Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME: Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem 2010, 110:1155-1164.
  • [24]Bora PS, Hu Z, Tezel TH, Sohn JH, Kang SG, Cruz JM, Bora NS, Garen A, Kaplan HJ: Immunotherapy for choroidal neovascularization in a laser-induced mouse model simulating exudative (wet) macular degeneration. Proc Natl Acad Sci U S A 2003, 100:2679-2684.
  • [25]Lambert V, Wielockx B, Munaut C, Galopin C, Jost M, Itoh T, Werb Z, Baker A, Libert C, Krell HW, Foidart JM, Noël A, Rakic JM: MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J 2003, 17:2290-2292.
  • [26]Lokeshwar VB, Cerwinka WH, Lokeshwar BL: HYAL1 hyaluronidase: a molecular determinant of bladder tumor growth and invasion. Cancer Res 2005, 65:2243-2250.
  • [27]Jiang H, Fang J, Wu B, Yin G, Sun L, Qu J, Barger SW, Wu S: Overexpression of serine racemase in retina and overproduction of D-serine in eyes of streptozotocin-induced diabetic retinopathy. J Neuroinflammation 2011, 8:119. BioMed Central Full Text
  • [28]Son G, Iimuro Y, Seki E, Hirano T, Kaneda Y, Fujimoto J: Selective inactivation of NF-kappaB in the liver using NF-kappaB decoy suppresses CCl4-induced liver injury and fibrosis. Am J Physiol Gastrointest Liver Physiol 2007, 293:G631-G639.
  • [29]Izumi-Nagai K, Nagai N, Ohgami K, Satofuka S, Ozawa Y, Tsubota K, Umezawa K, Ohno S, Oike Y, Ishida S: Macular pigment lutein is antiinflammatory in preventing choroidal neovascularization. Arterioscler Thromb Vasc Biol 2007, 27:2555-2562.
  • [30]Izumi-Nagai K, Nagai N, Ohgami K, Satofuka S, Ozawa Y, Tsubota K, Ohno S, Oike Y, Ishida S: Inhibition of choroidal neovascularization with an anti-inflammatory carotenoid astaxanthin. Invest Ophthalmol Vis Sci 2008, 49:1679-1685.
  • [31]Mustafa AK, Ahmad AS, Zeynalov E, Gazi SK, Sikka G, Ehmsen JT, Barrow RK, Coyle JT, Snyder SH, Dore S: Serine racemase deletion protects against cerebral ischemia and excitotoxicity. J Neurosci 2010, 30:1413-1416.
  • [32]Hayden MS, Ghosh S: Shared principles in NF-kappaB signaling. Cell 2008, 132:344-362.
  • [33]Shi X, Semkova I, Muther PS, Dell S, Kociok N, Joussen AM: Inhibition of TNF-alpha reduces laser-induced choroidal neovascularization. Exp Eye Res 2006, 83:1325-1334.
  • [34]Shi X, Semkova I, Kociok N, Gavranic C, Becker M, Joussen AM, Kirchhof B: Effect of anti-TNF-alpha on laser-induced choroidal neovascularization. Zhonghua Yan Ke Za Zhi 2008, 44:200-206.
  • [35]Lichtlen P, Lam TT, Nork TM, Streit T, Urech DM: Relative contribution of VEGF and TNF-alpha in the cynomolgus laser-induced CNV model: comparing the efficacy of bevacizumab, adalimumab, and ESBA105. Invest Ophthalmol Vis Sci 2010, 51:4738-4745.
  • [36]Jasielska M, Semkova I, Shi X, Schmidt K, Karagiannis D, Kokkinou D, Mackiewicz J, Kociok N, Joussen AM: Differential role of tumor necrosis factor (TNF)-alpha receptors in the development of choroidal neovascularization. Invest Ophthalmol Vis Sci 2010, 51:3874-3883.
  • [37]Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F, Trautwein C, Luedde T: Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011, 53:209-218.
  • [38]Chen KC, Wang YS, Hu CY, Chang WC, Liao YC, Dai CY, Juo SH: OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J 2011, 25:1718-1728.
  • [39]Yang Z, Wu L, Zhu X, Xu J, Jin R, Li G, Wu F: MiR-29a modulates the angiogenic properties of human endothelial cells. Biochem Biophys Res Commun 2013, 434:143-149.
  • [40]Han YP, Tuan TL, Wu H, Hughes M, Garner WL: TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa) B mediated induction of MT1-MMP. J Cell Sci 2001, 114:131-139.
  • [41]Philip S, Bulbule A, Kundu GC: Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J Biol Chem 2001, 276:44926-44935.
  • [42]Deryugina EI, Ratnikov B, Monosov E, Postnova TI, DiScipio R, Smith JW, Strongin AY: MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res 2001, 263:209-223.
  • [43]Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J: Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003, 44:3578-3585.
  文献评价指标  
  下载次数:1次 浏览次数:4次