期刊论文详细信息
Journal of Neuroinflammation
Attenuation of microglial activation in a mouse model of Alzheimer’s disease via NFAT inhibition
Colin K Combs1  Gunjan D Manocha1  Angela M Floden1  Lalida Rojanathammanee1 
[1] Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Neuroscience Building, Grand Forks 58203, ND, USA
关键词: Microglia;    Amyloid;    NFAT;    Alzheimer;   
Others  :  1137541
DOI  :  10.1186/s12974-015-0255-2
 received in 2014-11-03, accepted in 2015-01-25,  发布年份 2015
PDF
【 摘 要 】

Background

Amyloid β (Aβ) peptide is hypothesized to stimulate microglia to acquire their characteristic proinflammatory phenotype in Alzheimer’s disease (AD) brains. The specific mechanisms by which Aβ leads to microglial activation remain an area of interest for identifying attractive molecular targets for intervention. Based upon the fact that microglia express the proinflammatory transcription factor, nuclear factor of activated T cells (NFAT), we hypothesized that NFAT activity is required for the Aβ-stimulated microgliosis that occurs during disease.

Methods

Primary murine microglia cultures were stimulated with Aβ in the absence or presence of NFAT inhibitors, FK506 and tat-VIVIT peptide, to quantify secretion of cytokines, neurotoxins, or Aβ phagocytosis. A transgenic mouse model of AD, APP/PS1, was treated subcutaneously via mini-osmotic pumps with FK506 or tat-VIVIT to quantify effects on cytokines, microgliosis, plaque load, and memory.

Results

Expression of various NFAT isoforms was verified in primary murine microglia through Western blot analysis. Microglial cultures were stimulated with Aβ fibrils in the absence or presence of the NFAT inhibitors, FK506 and tat-VIVIT, to demonstrate that NFAT activity regulated Aβ phagocytosis, neurotoxin secretion, and cytokine secretion. Delivery of FK506 and tat-VIVIT to transgenic APP/PS1 mice attenuated spleen but not brain cytokine levels. However, FK506 and tat-VIVIT significantly attenuated both microgliosis and Aβ plaque load in treated mice compared to controls. Surprisingly, this did not correlate with changes in memory performance via T-maze testing.

Conclusions

Our findings suggest that development of specific NFAT inhibitors may offer promise as an effective strategy for attenuating the microgliosis and Aβ plaque deposition that occur in AD.

【 授权许可】

   
2015 Rojanathammanee et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317092749630.pdf 1682KB PDF download
Figure 9. 10KB Image download
Figure 8. 24KB Image download
Figure 7. 39KB Image download
Figure 6. 27KB Image download
Figure 5. 32KB Image download
Figure 4. 23KB Image download
Figure 3. 15KB Image download
Figure 2. 37KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SH: Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am J Pathol. 1988, 132(1):86-101.
  • [2]Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D: Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 1989, 24(3):173-82.
  • [3]Miyazono M, Iwaki T, Kitamoto T, Kaneko Y, Doh-ura K, Tateishi J: A comparative immunohistochemical study of Kuru and senile plaques with a special reference to glial reactions at various stages of amyloid plaque formation. Am J Pathol 1991, 139(3):589-98.
  • [4]Perlmutter LS, Barron E, Chui HC: Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci Lett 1990, 119(1):32-6.
  • [5]Araujo DM, Cotman CW: Beta-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res 1992, 569(1):141-5.
  • [6]Bitting L, Naidu A, Cordell B, Murphy GM Jr: Beta-amyloid peptide secretion by a microglial cell line is induced by beta-amyloid-(25–35) and lipopolysaccharide. J Biol Chem 1996, 271(27):16084-9.
  • [7]Davis JB, McMurray HF, Schubert D: The amyloid beta-protein of Alzheimer’s disease is chemotactic for mononuclear phagocytes. Biochem Biophys Res Commun 1992, 189(2):1096-100.
  • [8]Dhawan G, Floden AM, Combs CK: Amyloid-beta oligomers stimulate microglia through a tyrosine kinase dependent mechanism. Neurobiol Aging 2012, 33(10):2247-61.
  • [9]Haga S, Ikeda K, Sato M, Ishii T: Synthetic Alzheimer amyloid beta/A4 peptides enhance production of complement C3 component by cultured microglial cells. Brain Res 1993, 601(1–2):88-94.
  • [10]Klegeris A, Walker DG, McGeer PL: Activation of macrophages by Alzheimer beta amyloid peptide. Biochem Biophys Res Commun 1994, 199(2):984-91.
  • [11]Korotzer AR, Pike CJ, Cotman CW: Beta-amyloid peptides induce degeneration of cultured rat microglia. Brain Res 1993, 624(1–2):121-5.
  • [12]Korotzer AR, Watt J, Cribbs D, Tenner AJ, Burdick D, Glabe C, et al.: Cultured rat microglia express C1q and receptor for C1q: implications for amyloid effects on microglia. Exp Neurol 1995, 134(2):214-21.
  • [13]Korotzer AR, Whittemore ER, Cotman CW: Differential regulation by beta-amyloid peptides of intracellular free Ca2+ concentration in cultured rat microglia. Eur J Pharmacol 1995, 288(2):125-30.
  • [14]Lorton D, Kocsis JM, King L, Madden K, Brunden KR: Beta-amyloid induces increased release of interleukin-1 beta from lipopolysaccharide-activated human monocytes. J Neuroimmunol 1996, 67(1):21-9.
  • [15]McDonald DR, Brunden KR, Landreth GE: Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci Off J Soc Neurosci 1997, 17(7):2284-94.
  • [16]Meda L, Baron P, Prat E, Scarpini E, Scarlato G, Cassatella MA, et al.: Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with beta-amyloid[25–35]. J Neuroimmunol 1999, 93(1–2):45-52.
  • [17]Meda L, Bernasconi S, Bonaiuto C, Sozzani S, Zhou D, Otvos L Jr, et al.: Beta-amyloid (25–35) peptide and IFN-gamma synergistically induce the production of the chemotactic cytokine MCP-1/JE in monocytes and microglial cells. J Immunol 1996, 157(3):1213-8.
  • [18]Meda L, Bonaiuto C, Baron P, Otvos L Jr, Rossi F, Cassatella MA: Priming of monocyte respiratory burst by beta-amyloid fragment (25–35). Neurosci Lett 1996, 219(2):91-4.
  • [19]Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, et al.: Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 1995, 374(6523):647-50.
  • [20]Sondag CM, Dhawan G, Combs CK: Beta amyloid oligomers and fibrils stimulate differential activation of primary microglia. J Neuroinflammation. 2009, 6:1. BioMed Central Full Text
  • [21]Tan J, Town T, Paris D, Mori T, Suo Z, Crawford F, et al.: Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science 1999, 286(5448):2352-5.
  • [22]Wu HY, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, et al.: Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci Off J Soc Neurosci 2010, 30(7):2636-49.
  • [23]Wu HY, Hudry E, Hashimoto T, Uemura K, Fan ZY, Berezovska O, et al.: Distinct dendritic spine and nuclear phases of calcineurin activation after exposure to amyloid-beta revealed by a novel fluorescence resonance energy transfer assay. J Neurosci Off J Soc Neurosci 2012, 32(15):5298-309.
  • [24]Brown DR, Herms JW, Schmidt B, Kretzschmar HA: PrP and beta-amyloid fragments activate different neurotoxic mechanisms in cultured mouse cells. Eur J Neurosci 1997, 9(6):1162-9.
  • [25]Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE: Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci Off J Soc Neurosci 1999, 19(3):928-39.
  • [26]Lorton D: Beta-amyloid-induced IL-1 beta release from an activated human monocyte cell line is calcium- and G-protein-dependent. Mech Ageing Dev 1997, 94(1–3):199-211.
  • [27]Silei V, Fabrizi C, Venturini G, Salmona M, Bugiani O, Tagliavini F, et al.: Activation of microglial cells by PrP and beta-amyloid fragments raises intracellular calcium through L-type voltage sensitive calcium channels. Brain Res 1999, 818(1):168-70.
  • [28]Goodman Y, Mattson MP: Staurosporine and K-252 compounds protect hippocampal neurons against amyloid beta-peptide toxicity and oxidative injury. Brain Res 1994, 650(1):170-4.
  • [29]Copani A, Bruno V, Battaglia G, Leanza G, Pellitteri R, Russo A, et al.: Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta-amyloid peptide. Mol Pharmacol 1995, 47(5):890-7.
  • [30]Le WD, Colom LV, Xie WJ, Smith RG, Alexianu M, Appel SH: Cell death induced by beta-amyloid 1–40 in MES 23.5 hybrid clone: the role of nitric oxide and NMDA-gated channel activation leading to apoptosis. Brain Res 1995, 686(1):49-60.
  • [31]Smith-Swintosky VL, Zimmer S, Fenton JW 2nd, Mattson MP: Opposing actions of thrombin and protease nexin-1 on amyloid beta-peptide toxicity and on accumulation of peroxides and calcium in hippocampal neurons. J Neurochem 1995, 65(3):1415-8.
  • [32]Barger SW, Horster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP: Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A 1995, 92(20):9328-32.
  • [33]Mattson MP, Tomaselli KJ, Rydel RE: Calcium-destabilizing and neurodegenerative effects of aggregated beta-amyloid peptide are attenuated by basic FGF. Brain Res 1993, 621(1):35-49.
  • [34]Weiss JH, Pike CJ, Cotman CW: Ca2+ channel blockers attenuate beta-amyloid peptide toxicity to cortical neurons in culture. J Neurochem 1994, 62(1):372-5.
  • [35]Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu HY, Hyman BT, Bacskai BJ: Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 2008, 59(2):214-25.
  • [36]Liu F, Grundke-Iqbal I, Iqbal K, Oda Y, Tomizawa K, Gong CX: Truncation and activation of calcineurin A by calpain I in Alzheimer disease brain. J Biol Chem 2005, 280(45):37755-62.
  • [37]Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL: Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci Off J Soc Neurosci 2007, 27(11):2866-75.
  • [38]Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM, et al.: Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci Off J Soc Neurosci 2009, 29(41):12957-69.
  • [39]Celsi F, Svedberg M, Unger C, Cotman CW, Carri MT, Ottersen OP, et al.: Beta-amyloid causes downregulation of calcineurin in neurons through induction of oxidative stress. Neurobiol Dis 2007, 26(2):342-52.
  • [40]Dineley KT, Hogan D, Zhang WR, Taglialatela G: Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiol Learn Mem 2007, 88(2):217-24.
  • [41]Hudry E, Wu HY, Arbel-Ornath M, Hashimoto T, Matsouaka R, Fan Z, et al.: Inhibition of the NFAT pathway alleviates amyloid beta neurotoxicity in a mouse model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 2012, 32(9):3176-92.
  • [42]Norris CM, Kadish I, Blalock EM, Chen KC, Thibault V, Porter NM, et al.: Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models. J Neurosci Off J Soc Neurosci 2005, 25(18):4649-58.
  • [43]Oh-hora M, Rao A: The calcium/NFAT pathway: role in development and function of regulatory T cells. Microbes Infect 2009, 11(5):612-9.
  • [44]Benedito AB, Lehtinen M, Massol R, Lopes UG, Kirchhausen T, Rao A, et al.: The transcription factor NFAT3 mediates neuronal survival. J Biol Chem 2005, 280(4):2818-25.
  • [45]Graef IA, Wang F, Charron F, Chen L, Neilson J, Tessier-Lavigne M, et al.: Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 2003, 113(5):657-70.
  • [46]Luoma JI, Zirpel L: Deafferentation-induced activation of NFAT (nuclear factor of activated T-cells) in cochlear nucleus neurons during a developmental critical period: a role for NFATc4-dependent apoptosis in the CNS. J Neurosci Off J Soc Neurosci 2008, 28(12):3159-69.
  • [47]Pérez-Ortiz JM, Serrano-Pérez MC, Pastor MD, Martín ED, Calvo S, Rincón M, et al.: Mechanical lesion activates newly identified NFATc1 in primary astrocytes: implication of ATP and purinergic receptors. Eur J Neurosci 2008, 27(9):2453-65.
  • [48]Sama MA, Mathis DM, Furman JL, Abdul HM, Artiushin IA, Kraner SD, et al.: Interleukin-1beta-dependent signaling between astrocytes and neurons depends critically on astrocytic calcineurin/NFAT activity. J Biol Chem 2008, 283(32):21953-64.
  • [49]Shaw KT, Ho AM, Raghavan A, Kim J, Jain J, Park J, et al.: Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells. Proc Natl Acad Sci U S A. 1995, 92:11205-9.
  • [50]Macian F, Garcia-Rodriguez C, Rao A: Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. EMBO J 2000, 19(17):4783-95.
  • [51]Masuda ES, Imamura R, Amasaki Y, Arai K, Arai N: Signalling into the T-cell nucleus: NFAT regulation. Cell Signal 1998, 10(9):599-611.
  • [52]Rao A, Luo C, Hogan PG: Transcription factors of the nfat family: regulation and function. Immunol.15.1.707. Annu Rev Immunol 1997, 15(1):707-47.
  • [53]Boise LH, Petryniak B, Mao X, June CH, Wang CY, Lindsten T, et al.: The NFAT-1 DNA binding complex in activated T cells contains Fra-1 and JunB. Mol Cell Biol 1993, 13(3):1911-9.
  • [54]Jain J, McCafffrey PG, Miner Z, Kerppola TK, Lambert JN, Verdine GL, et al.: The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature. 1993, 365:352-5.
  • [55]Yang XY, Wang LH, Chen T, Hodge DR, Resau JH, DaSilva L, et al.: Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. J Biol Chem. 2000, 275(7):4541-4.
  • [56]Fisher WG, Yang PC, Medikonduri RK, Jafri MS: NFAT and NFkappaB activation in T lymphocytes: a model of differential activation of gene expression. Ann Biomed Eng 2006, 34(11):1712-28.
  • [57]Bao Y, Li R, Jiang J, Cai B, Gao J, Le K, et al.: Activation of peroxisome proliferator-activated receptor gamma inhibits endothelin-1-induced cardiac hypertrophy via the calcineurin/NFAT signaling pathway. Mol Cell Biochem 2008, 317(1–2):189-96.
  • [58]Putt ME, Hannenhalli S, Lu Y, Haines P, Chandrupatla HR, Morrisey EE, et al.: Evidence for coregulation of myocardial gene expression by MEF2 and NFAT in human heart failure. Circ Cardiovasc Genet 2009, 2(3):212-9.
  • [59]Shaw JP, Utz P, Durand DB, Toole JJ, Emmel EA, Crabtree GR: Identification of a putative regulator of early T cell activation genes. Science 1988, 241(4862):202-5.
  • [60]Shioda N, Han F, Moriguchi S, Fukunaga K: Constitutively active calcineurin mediates delayed neuronal death through Fas-ligand expression via activation of NFAT and FKHR transcriptional activities in mouse brain ischemia. J Neurochem 2007, 102(5):1506-17.
  • [61]Canellada A, Ramirez BG, Minami T, Redondo JM, Cano E: Calcium/calcineurin signaling in primary cortical astrocyte cultures: Rcan1-4 and cyclooxygenase-2 as NFAT target genes. Glia 2008, 56(7):709-22.
  • [62]Dever SM, Xu R, Fitting S, Knapp PE, Hauser KF: Differential expression and HIV-1 regulation of mu-opioid receptor splice variants across human central nervous system cell types. J Neurovirol 2012, 18(3):181-90.
  • [63]Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, et al.: Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 2012, 32(46):16129-40.
  • [64]Jones EA, Sun D, Kobierski L, Symes AJ: NFAT4 is expressed in primary astrocytes and activated by glutamate. J Neurosci Res 2003, 72(2):191-7.
  • [65]Kim B, Jeong HK, Kim JH, Lee SY, Jou I, Joe EH: Uridine 5′-diphosphate induces chemokine expression in microglia and astrocytes through activation of the P2Y6 receptor. J Immunol 2011, 186(6):3701-9.
  • [66]Serrano-Perez MC, Martin ED, Vaquero CF, Azcoitia I, Calvo S, Cano E, et al.: Response of transcription factor NFATc3 to excitotoxic and traumatic brain insults: identification of a subpopulation of reactive astrocytes. Glia 2011, 59(1):94-107.
  • [67]Luoma JI, Zirpel L: Deafferentation-induced activation of NFAT (nuclear factor of activated T-cells) in cochlear nucleus neurons during a developmental critical period: a role for NFATc4-dependent apoptosis in the CNS. J Neurosci 2008, 28(12):3159-69.
  • [68]Ferrari D, Stroh C, Schulze-Osthoff K, Ferrari D, Stroh C, Schulze-Osthoff K: P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J Biol Chem 1999, 274(19):13205-10.
  • [69]Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Inoue K: Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem 2009, 108(1):115-25.
  • [70]Nagamoto-Combs K, Combs CK: Microglial phenotype is regulated by activity of the transcription factor, NFAT (nuclear factor of activated T cells). J Neurosci Off J Soc Neurosci 2010, 30(28):9641-6.
  • [71]Rojanathammanee L, Puig KL, Combs CK: Pomegranate polyphenols and extract inhibit nuclear factor of activated T-cell activity and microglial activation in vitro and in a transgenic mouse model of Alzheimer disease. J Nutr 2013, 143(5):597-605.
  • [72]Shiratori M, Tozaki-Saitoh H, Yoshitake M, Tsuda M, Inoue K: P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. J Neurochem 2010, 114(3):810-9.
  • [73]Aramburu J, Yaffe MB, Lopez-Rodriguez C, Cantley LC, Hogan PG, Rao A: Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 1999, 285(5436):2129-33.
  • [74]Noguchi H, Matsushita M, Okitsu T, Moriwaki A, Tomizawa K, Kang S, et al.: A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat Med 2004, 10(3):305-9.
  • [75]Kuriyama M, Matsushita M, Tateishi A, Moriwaki A, Tomizawa K, Ishino K, et al.: A cell-permeable NFAT inhibitor peptide prevents pressure-overload cardiac hypertrophy. Chem Biol Drug Des 2006, 67(3):238-43.
  • [76]Brooks H, Lebleu B, Vivès E: Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev Protein Pept-Med Transduction: Mech Implications Drug Deliv 2005, 57(4):559-77.
  • [77]Vives E: Present and future of cell-penetrating peptide mediated delivery systems: “Is the Trojan horse too wild to go only to Troy?”. J Controlled Release. 2005, 109:77-85.
  • [78]Henderson DJ, Naya I, Bundick RV, Smith GM, Schmidt JA: Comparison of the effects of FK-506, cyclosporin A and rapamycin on IL-2 production. Immunology 1991, 73(3):316-21.
  • [79]Gonzalez-Pinto IM, Rimola A, Margarit C, Cuervas-Mons V, Abradelo M, Alvarez-Laso C, et al.: Five-year follow-up of a trial comparing tacrolimus and cyclosporine microemulsion in liver transplantation. Transplant Proc 2005, 37(4):1713-5.
  • [80]Dhawan G, Combs CK: Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease. J Neuroinflammation. 2012, 9:117. BioMed Central Full Text
  • [81]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72:248-54.
  • [82]Wenk GL. Assessment of spatial memory using the T maze. Curr Protoc Neurosci. 1998;Chapter 8:Unit 8 5B.
  • [83]Vihma H, Pruunsild P, Timmusk T: Alternative splicing and expression of human and mouse NFAT genes. Genomics 2008, 92(5):279-91.
  • [84]Floden AM, Li S, Combs CK: {Beta}-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor {alpha} and NMDA receptors. J Neurosci 2005, 25(10):2566-75. doi:10.1523/JNEUROSCI.4998-04.2005
  • [85]Tie X, Han S, Meng L, Wang Y, Wu A: NFAT1 is highly expressed in, and regulates the invasion of, glioblastoma multiforme cells. PLoS One 2013, 8(6):e66008.
  • [86]Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL: Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991, 66(4):807-15.
  • [87]Su Q, Weber L, Le Hir M, Zenke G, Ryffel B: Nephrotoxicity of cyclosporin A and FK506: inhibition of calcineurin phosphatase. Ren Physiol Biochem 1995, 18(3):128-39.
  • [88]Rozkalne A, Hyman BT, Spires-Jones TL: Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice. Neurobiol Dis 2011, 41(3):650-4.
  • [89]Spires-Jones TL, Kay K, Matsouka R, Rozkalne A, Betensky RA, Hyman BT: Calcineurin inhibition with systemic FK506 treatment increases dendritic branching and dendritic spine density in healthy adult mouse brain. Neurosci Lett 2011, 487(3):260-3.
  • [90]Taglialatela G, Hogan D, Zhang WR, Dineley KT: Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 2009, 200(1):95-9.
  • [91]Reding R, Wallemacq PE, Lamy ME, Rahier J, Sempoux C, Debande B, et al.: Conversion from cyclosporine to FK506 for salvage of immunocompromised pediatric liver allografts. Efficacy, toxicity, and dose regimen in 23 children. Transplantation 1994, 57(1):93-100.
  • [92]Aramburu J, Garcia-Cozar F, Raghavan A, Okamura H, Rao A, Hogan PG: Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol Cell 1998, 1(5):627-37.
  • [93]Yu H, van Berkel TJ, Biessen EA: Therapeutic potential of VIVIT, a selective peptide inhibitor of nuclear factor of activated T cells, in cardiovascular disorders. Cardiovasc Drug Rev 2007, 25(2):175-87.
  • [94]Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, et al.: Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007, 53(3):337-51.
  文献评价指标  
  下载次数:66次 浏览次数:11次