EvoDevo | |
Gastrulation occurs in multiple phases at two distinct sites in Latrodectus and Cheiracanthium spiders | |
Steven Black2  Kay Larkin2  Christine Bates1  Allison Edgar3  | |
[1] Department of Internal Medicine, Duke University, Durham 27708, NC, USA;Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland 97202, OR, USA;Department of Biology, Duke University, Durham 27708, NC, USA | |
关键词: Spider; Arachnid; Chelicerate; Arthropod; Morphogenesis; Gastrulation; | |
Others : 1229042 DOI : 10.1186/s13227-015-0029-z |
|
received in 2015-08-11, accepted in 2015-10-05, 发布年份 2015 |
【 摘 要 】
Background
The longstanding canonical model of spider gastrulation posits that cell internalization occurs only at a unitary central blastopore; and that the cumulus (dorsal organizer) arises from within the early deep layer by cell–cell interaction. Recent work has begun to challenge the canonical model by demonstrating cell internalization at extra-blastoporal sites in two species (Parasteatoda tepidariorum and Zygiella x-notata); and showing in Zygiella that the prospective cumulus internalizes first, before other cells are present in the deep layer. The cell behaviors making up spider gastrulation thus appear to show considerable variation, and a wider sampling of taxa is indicated.
Results
We evaluated the model in three species from two families by direct observation of living embryos. Movements of individual cells were traced from timelapse recordings and the origin and fate of the cumulus determined by CM-DiI labeling. We show that there are two distinct regions of internalization: most cells enter the deep layer via the central blastopore but many additional cells ingress via an extra-blastoporal ring, either at the periphery of the germ disc (Latrodectus spp.) or nearer the central field (Cheiracanthium mildei). In all species, the cumulus cells internalize first; this is shown by tracing cells in timelapse, histology, and by CM-DiI injection into the deep layer. Injection very early in gastrulation labels only cumulus mesenchyme cells whereas injections at later stages label non-cumulus mesoderm and endoderm.
Conclusions
We propose a revised model to accommodate the new data. Our working model has the prospective cumulus cells internalizing first, at the central blastopore. The cumulus cells begin migration before other cells enter the deep layer. This is consistent with early specification of the cumulus and suggests that cell–cell interaction with other deep layer cells is not required for its function. As the cumulus migrates, additional mesendoderm internalizes at two distinct locations: through the central blastopore and at an extra-blastoporal ring. Our work thus demonstrates early, cell-autonomous behavior of the cumulus and variation in subsequent location and timing of cell internalization during gastrulation in spiders.
【 授权许可】
2015 Edgar et al.
Files | Size | Format | View |
---|---|---|---|
Fig.9. | 89KB | Image | download |
Fig.8. | 71KB | Image | download |
Fig.7. | 77KB | Image | download |
Fig.6. | 98KB | Image | download |
Fig.5. | 158KB | Image | download |
Fig.4. | 104KB | Image | download |
Fig.3. | 121KB | Image | download |
Fig.2. | 46KB | Image | download |
Fig.1. | 42KB | Image | download |
Fig.9. | 89KB | Image | download |
Fig.8. | 71KB | Image | download |
Fig.7. | 77KB | Image | download |
Fig.6. | 98KB | Image | download |
Fig.5. | 158KB | Image | download |
Fig.4. | 104KB | Image | download |
Fig.3. | 121KB | Image | download |
Fig.2. | 46KB | Image | download |
Fig.1. | 42KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.6.
Fig.7.
Fig.8.
Fig.9.
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.6.
Fig.7.
Fig.8.
Fig.9.
【 参考文献 】
- [1]Hilbrant M, Damen WGM, McGregor AP. Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Development. 2012; 139:2655-2662.
- [2]Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature. 2010; 463:1079-1083.
- [3]Akiyama-Oda Y, Oda H. Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by Hedgehog signaling in the early spider embryo. Development. 2010; 137:1263-1273.
- [4]Akiyama-Oda Y. Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development. 2006; 133:2347-2357.
- [5]McGregor AP, Pechmann M, Schwager EE, Feitosa NM, Kruck S, Aranda M, Damen WGM. Wnt8 is required for growth-zone establishment and development of opisthosomal segments in a spider. Curr Biol. 2008; 18:1619-1623.
- [6]Pechmann M, Khadjeh S, Turetzek N, McGregor AP, Damen WGM, Prpic N-M. Novel function of distal-less as a gap gene during spider segmentation. PLoS Genet. 2011; 7:e1002342.
- [7]Schwager EE, Pechmann M, Feitosa NM, McGregor AP, Damen WGM. hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum. Curr Biol. 2009; 19:1333-1340.
- [8]Stollewerk A, Schoppmeier M, Damen WGM. Involvement of notch and delta genes in spider segmentation. Nature. 2003; 423:863-865.
- [9]Linne V, Eriksson BJ, Stollewerk A. Single-minded and the evolution of the ventral midline in arthropods. Dev Biol. 2012; 364:66-76.
- [10]Doeffinger C, Hartenstein V, Stollewerk A. Compartmentalisation of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, the optic ganglia and the mushroom body. J Comp Neurol. 2010; 518:2612-2632.
- [11]Holm Å. Experimentelle Untersuchungen über die Entwicklung und die Entwicklungsphysiologie des Spinnenembryos. Zoologiska Bidrag. 1952; 29:293-424.
- [12]Holm Å. Notes on the development of an orthognath spider, Ischnothele Karschi Bös & Lenz. Zoologiska Bidrag. 1954; 30:199-221.
- [13]Holm Å. Study on the development and developmental biology of spiders, vol 19. Zoologiska Bidra Fran Uppsala; 1940.
- [14]Anderson DT. Embryology and phylogeny in annelids and arthropods. Pergamon Press, New York; 1973.
- [15]Foelix R. Biology of spiders. Oxford University Press; 2010.
- [16]Saaristo MI. Theridiid or cobweb spiders of the granitic Seychelles islands (Araneae, Theridiidae). Phelsuma. 2006; 14:49-89.
- [17]Akiyama-Oda Y, Oda H. Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development. 2003; 130:1735-1747.
- [18]Oda H, Nishimura O, Hirao Y, Tarui H, Agata K, Akiyama-Oda Y. Progressive activation of delta-notch signaling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum. Development. 2007; 134:2195-2205.
- [19]Oda H, Akiyama-Oda Y. Differing strategies for forming the arthropod body plan: lessons from Dpp, Sog and Delta in the fly Drosophila and spider Achaearanea. Dev Growth Differ. 2008; 50:203-214.
- [20]McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic N-M, Damen WGM. Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. BioEssays. 2008; 30:487-498.
- [21]Wolff C, Hilbrant M. The embryonic development of the central American wandering spider Cupiennius salei. Front Zool. 2011; 8:15. BioMed Central Full Text
- [22]Montgomery TH. The development of theridium, an aranead, up to the stage of reversion. J Morphol. 1909; 20:297-352.
- [23]Kanayama M, Akiyama-Oda Y, Oda H. Early embryonic development in the spider Achaearanea tepidariorum: microinjection verifies that cellularization is complete before the blastoderm stage. Arthropod Struct Dev. 2010; 39:436-445.
- [24]Mittmann B, Wolff C. Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol. 2012; 222:189-216.
- [25]Ehn A. Morphological and histological effects of lithium on the embryonic development of Agelena labyrinthica. Zoologiska Bidragfran Uppsala. 1963; 36:1-26.
- [26]Chaw RC, Vance E, Black SD. Gastrulation in the spider Zygiella x-notata involves three distinct phases of cell internalization. Dev Dyn. 2007; 236:3484-3495.
- [27]Anderson DT. Chelicerates. In: Embryology and Phylogeny in Annelids and Arthropods. New York: Pergamon Press; 1973.
- [28]Rempel JG. The embryology of the black widow spider, Latrodectus mactans (Fabr.). Can J Zool. 1957; 35:35-74.
- [29]Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H. Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nat Commun. 2011; 2:500-511.
- [30]Keller R, Shook D. Gastrulation in amphibians. Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 2004.
- [31]Hardin J, Keller R. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development. 1988; 103:211-230.
- [32]Yamazaki K, Akiyama-Oda Y, Oda H. Expression patterns of a twist-related gene in embryos of the spider Achaearanea tepidariorum reveal divergent aspects of mesoderm development in the fly and spider. Zool Sci. 2005; 22:177-185.
- [33]Yoshikura M. Embryological studies on the Liphistiid spider Heptathela Kimurai. Kumamoto J Sci Ser B Sect 2 Biol. 1955; 2:1-86.
- [34]Yoshikura M. On the development of a purse-web spider, Atypus karschi Dönitz. Kumamoto J Sci Ser B Sect 2 Biol. 1958; 3:73-85.
- [35]Schimkewitsch L, Schimkewitsch W. Ein Betrag zur Entwicklungsgeschichte der Tetrapneumones. Bull Acad Imp Sci St Petersbourg. 1911; 8:637-654.
- [36]Lyons DC, Kaltenbach SL, McClay DR. Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states. WIREs Dev Biol. 2011; 1:231-252.
- [37]Roth S. Gastrulation in Other Insects. In: Gastrulation: from cells to embryo. Stern CD, editor. Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 2004: p.105-121.
- [38]Gerberding M, Patel NH. Gastrulation in crustaceans: germ layers and cell lineages. In: Gastrulation: from cells to embryo. Stern CD, editor. Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 2004: p.79-89.
- [39]Hormiga G, Griswold CE. Systematics, phylogeny, and evolution of orb-weaving spiders. Annu Rev Entomol. 2014; 59:487-512.
- [40]Ubick D, Paquin P, Cushing PE, Roth V. Spiders of North America: an identification manual. American Arachnological Society; 2005.
- [41]Lopardo L, Giribet G, Hormiga G. Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses-a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture. Cladistics. 2010; 27:278-330.
- [42]Dimitrov D, Lopardo L, Giribet G, Arnedo MA, Alvarez-Padilla F, Hormiga G. Tangled in a sparse spider web: single origin of Orb weavers and their spinning work unravelled by denser taxonomic sampling. Proc R Soc B Biol Sci. 2012; 279:1341-1350.
- [43]Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW, Hayashi CY, Agnarsson I. Reconstructing web evolution and spider diversification in the molecular era. Proc Natl Acad Sci USA. 2009; 106:5229-5234.
- [44]Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for Orb web evolution. Curr Biol. 2014; 24:1765-1771.
- [45]Fernández R, Hormiga G, Giribet G. Phylogenomic analysis of spiders reveals nonmonophyly of Orb weavers. Curr Biol. 2014; 24:1772-1777.
- [46]Agnarsson I, Gregorič M, Blackledge TA, Kuntner M. The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb-like spider webs. J Zool Syst Evol Res. 2012; 51:100-106.
- [47]Miller JA, Carmichael A, Ramírez MJ, Spagna JC, Haddad CR, Řezáč M, Johannesen J, Král J, Wang X-P, Griswold CE. Molecular phylogenetics and evolution. Mol Phylogenet Evol. 2010; 55:786-804.
- [48]Spagna JC, Gillespie RG. More data, fewer shifts: molecular insights into the evolution of the spinning apparatus in non-orb-weaving spiders. Mol Phylogenet Evol. 2008; 46:347-368.
- [49]Ramírez MJ. The morphology and phylogeny of Dionychan Spiders (Araneae: Araneomorphae). Bull Am Mus Nat Hist. 2014; 390:1-374.