期刊论文详细信息
GigaScience
Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification
Quanfei Huang1  Jiguang Li1  Ribei Fu1  Min Tang2  Lili Zhou2  Xu Su3  Qing Yang1  Shanlin Liu3  Yiyuan Li3  Xin Zhou3 
[1] BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong Province 518083, China;China National GeneBank-Shenzhen, Yantian District, Shenzhen, Guangdong Province 518083, China;Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, Shenzhen, Guangdong Province 518083, China
关键词: Metabarcoding;    PCR-independent;    Mitochondria;    Insect biodiversity;    Biomonitoring;    Abundance;    Species richness;    Next-generation-sequencing;   
Others  :  863216
DOI  :  10.1186/2047-217X-2-4
 received in 2012-12-19, accepted in 2013-03-01,  发布年份 2013
PDF
【 摘 要 】

Background

Next-generation-sequencing (NGS) technologies combined with a classic DNA barcoding approach have enabled fast and credible measurement for biodiversity of mixed environmental samples. However, the PCR amplification involved in nearly all existing NGS protocols inevitably introduces taxonomic biases. In the present study, we developed new Illumina pipelines without PCR amplifications to analyze terrestrial arthropod communities.

Results

Mitochondrial enrichment directly followed by Illumina shotgun sequencing, at an ultra-high sequence volume, enabled the recovery of Cytochrome c Oxidase subunit 1 (COI) barcode sequences, which allowed for the estimation of species composition at high fidelity for a terrestrial insect community. With 15.5 Gbp Illumina data, approximately 97% and 92% were detected out of the 37 input Operational Taxonomic Units (OTUs), whether the reference barcode library was used or not, respectively, while only 1 novel OTU was found for the latter. Additionally, relatively strong correlation between the sequencing volume and the total biomass was observed for species from the bulk sample, suggesting a potential solution to reveal relative abundance.

Conclusions

The ability of the new Illumina PCR-free pipeline for DNA metabarcoding to detect small arthropod specimens and its tendency to avoid most, if not all, false positives suggests its great potential in biodiversity-related surveillance, such as in biomonitoring programs. However, further improvement for mitochondrial enrichment is likely needed for the application of the new pipeline in analyzing arthropod communities at higher diversity.

【 授权许可】

   
2013 Zhou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725031008523.pdf 512KB PDF download
39KB Image download
21KB Image download
45KB Image download
74KB Image download
【 图 表 】

【 参考文献 】
  • [1]Bonada N, Prat N, Resh VH, Statzner B: Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 2006, 51:495-523.
  • [2]Rosenberg DM, Resh VH: An introduction to freshwater biomonitoring and benthic invertebrates. In Freshwater Biomonitoring and Benthic Macroinvertebrates. Edited by Rosenberg D, Resh V. New York: Chapman and Hall; 1993:1-9.
  • [3]USEPA: Summary of biological assessment programs and biocriteria development for states, tribes, territories, and interstate commissions: streams and wadeable rivers. EPA 822-R-02-048. Washington, DC: US Environmental Protection Agency, Office of Environmental Information and Office of Water; 2002.
  • [4]Brereton T, Roy D, Middlebrook I, Botham M, Warren M: The development of butterfly indicators in the United Kingdom and assessments in 2010. J Insect Conserv 2011, 15:139-151.
  • [5]Saintilan N, Imgraben S: Principles for the monitoring and evaluation of wetland extent, condition and function in Australia. Environ Monit Assess 2012, 184:595-606.
  • [6]Carter JL, Resh VH, Rosenberg DM, Reynoldson TB: Biomonitoring in North American rivers: a comparison of methods used for benthic macroinvertebrates in Canada and the United States. John Wiley & Sons, Ltd; 2006:203-228. [Biological monitoring of rivers]
  • [7]Carter JL, Resh VH: After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. J N Am Bentholl Soc 2001, 20:658-682.
  • [8]USEPA: Wadeable streams assessment: a collaborative survey of the Nation’s streams. EPA 841-B-06-002. US Environmental Protection Agency Washington, Office of Research and Development, Office of Water, DC; 2006.
  • [9]Baird DJ, Hajibabaei M: Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol Ecol 2012, 21:2039-2044.
  • [10]Resh VH, Unzicker JD: Water quality monitoring and aquatic organisms: the importance of species identification. J Water Pollut Control Fed 1975, 47:9-19.
  • [11]Haase P, Murray-Bligh J, Lohse S, Pauls S, Sundermann A, Gunn R, Clarke R: Assessing the impact of errors in sorting and identifying macroinvertebrate samples. The Ecological Status of European Rivers: Evaluation and Intercalibration of Assessment Methods 2006, 188:505-521.
  • [12]Pfrender ME, Hawkins CP, Bagley M, Courtney GW, Creutzburg BR, Epler JH, Fend S, Ferrington LC Jr, Hartzell PL, Jackson S: Assessing macroinvertebrate biodiversity in freshwater ecosystems: advances and challenges in DNA-based approaches. Q Rev Biol 2010, 85:319-340.
  • [13]Hebert PDN, Cywinska A, Ball SL: Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 2003, 270:313-321.
  • [14]Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH: Environmental DNA. Mol Ecol 2012, 21:1789-1793.
  • [15]Lecroq B, Lejzerowicz F, Bachar D, Christen R, Esling P, Baerlocher L, Osteras M, Farinelli L, Pawlowski J: Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc Natl Acad Sci U S A 2011, 108:13177-13182.
  • [16]Yu DW, Ji Y, Emerson BC, Wang X, Ye C, Yang C, Ding Z: Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol 2012, 3:613-623.
  • [17]Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML: Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 2008, 4:e1000255.
  • [18]Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 2011, 108(Suppl 1):4516-4522.
  • [19]Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 2012, 6:1621-1624.
  • [20]Shokralla S, Spall JL, Gibson JF, Hajibabaei M: Next-generation sequencing technologies for environmental DNA research. Mol Ecol 2012, 21:1794-1805.
  • [21]Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H: ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 2010, 10:189. BioMed Central Full Text
  • [22]Brown DS, Jarman SN, Symondson WO: Pyrosequencing of prey DNA in reptile faeces: analysis of earthworm consumption by slow worms. Mol Ecol Resour 2012, 12:259-266.
  • [23]Deagle BE, Kirkwood R, Jarman SN: Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol Ecol 2009, 18:2022-2038.
  • [24]Gomez-Alvarez V, Teal TK, Schmidt TM: Systematic artifacts in metagenomes from complex microbial communities. ISME J 2009, 3:1314-1317.
  • [25]Sharpton TJ, Riesenfeld SJ, Kembel SW, Ladau J, O’Dwyer JP, Green JL, Eisen JA, Pollard KS: PhylOTU: a high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data. PLoS Comput Biol 2011, 7:e1001061.
  • [26]Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O’Toole PW: Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 2010, 38:e200.
  • [27]Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U: 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 2010, 188:291-301.
  • [28]Arif IA, Khan HA, Al Sadoon M, Shobrak M: Limited efficiency of universal mini-barcode primers for DNA amplification from desert reptiles, birds and mammals. Genet Mol Res 2011, 10:3559-3564.
  • [29]Taberlet P, Gielly L, Pautou G, Bouvet J: Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 1991, 17:1105-1109.
  • [30]Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 1994, 3:294-299.
  • [31]Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN: Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 2007, 7:544-548.
  • [32]Coissac E, Riaz T, Puillandre N: Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol Ecol 2012, 21:1834-1847.
  • [33]Hajibabaei M, Shokralla S, Zhou X, Singer GA, Baird DJ: Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 2011, 6:e17497.
  • [34]Rougerie R, Smith MA, Fernandez-Triana J, Lopez-Vaamonde C, Ratnasingham S, Hebert PD: Molecular analysis of parasitoid linkages (MAPL): gut contents of adult parasitoid wasps reveal larval host. Mol Ecol 2010, 20:179-186.
  • [35]Li Y, Zhou X, Feng G, Hu H, Niu L, Hebert PD, Huang D: COI and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila (Hymenoptera, Eurytomidae). Mol Ecol Resour 2010, 10:31-40.
  • [36]Porazinska DL, Sung W, Giblin-Davis RM, Thomas WK: Reproducibility of read numbers in high-throughput sequencing analysis of nematode community composition and structure. Mol Ecol Resour 2010, 10:666-676.
  • [37]Soininen EM, Valentini A, Coissac E, Miquel C, Gielly L, Brochmann C, Brysting AK, Sønstebø JH, Ims RA, Yoccoz NG: Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Front Zool 2009, 6:16. BioMed Central Full Text
  • [38]Kowalczyk R, Taberlet P, Coissac E, Valentini A, Miquel C, Kamiński T, Wójcik JM: Influence of management practices on large herbivore diet—case of european bison in białowieża primeval forest (Poland). For Ecol Manage 2011, 261:821-828.
  • [39]Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E: Towards next‐generation biodiversity assessment using DNA metabarcoding. Mol Ecol 2012, 21:2045-2050.
  • [40]Pond SK, Wadhawan S, Chiaromonte F, Ananda G, Chung WY, Taylor J, Nekrutenko A: Windshield splatter analysis with the galaxy metagenomic pipeline. Genome Res 2009, 19:2144-2153.
  • [41]Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R: Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 2009, 326:433-436.
  • [42]International Barcode of Life initiative. http://ibol.org/ webcite
  • [43]Meusnier I, Singer GAC, Landry JF, Hickey DA, Hebert PDN, Hajibabaei M: A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 2008, 9:214. BioMed Central Full Text
  • [44]Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, Tang M, Fu R, Li J: Raw data, assembly and annotation results for: “Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification”. GigaScience 2013. Database http://dx.doi.org/10.5524/100045 webcite
  • [45]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K: De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010, 20:265-272.
  • [46]Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 2012, 1:18.
  • [47]Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ: Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008, 74:2461-2470.
  • [48]Hajibabaei M, Spall JL, Shokralla S, van Konynenburg S: Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol 2012, 12:28. BioMed Central Full Text
  • [49]Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y: A tale of three next generation sequencing platforms: comparison of Ion torrent, pacific biosciences and illumina MiSeq sequencers. BMC Genomics 2012, 13:341. BioMed Central Full Text
  • [50]Fonseca VG, Carvalho GR, Sung W, Johnson HF, Power DM, Neill SP, Packer M, Blaxter ML, Lambshead PJD, Thomas WK: Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat Commun 2010, 1:98.
  • [51]Mason VC, Li G, Helgen KM, Murphy WJ: Efficient cross-species capture hybridization and next-generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens. Genome Res 2011, 21:1695-1704.
  • [52]McGeoch MA: The selection, testing and application of terrestrial insects as bioindicators. Biol Rev Camb Philos Soc 1998, 73:181-201.
  • [53]Barcode of Life Data Systems (BOLD). http://www.boldsystems.org webcite
  • [54]Tamura K, Aotsuka T: Rapid isolation method of animal mitochondrial DNA by the alkaline lysis procedure. Biochem Genet 1988, 26:815-819.
  • [55]Hajibabaei M, Ivanova NV, Ratnasingham S, Dooh RT, Kirk SL, Mackie PM, Hebert PDN: Critical factors for assembling a high volume of DNA barcodes. Phil Trans Biol Sci 2005, 360:1959-1967. 56
  • [56]Canadian Center for DNA Barcoding (CCDB). http://www.dnabarcoding.ca/pa/ge/research/protocols webcite
  • [57]Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W: Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly astraptes fulgerator. Proc Natl Acad Sci U S A 2004, 101:14812.
  • [58]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [59]Letunic I, Bork P: Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 2011, 39:W475-W478.
  • [60]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [61]Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 1966, 2009:25.
  • [62]Birney E, Clamp M, Durbin R: GeneWise and genomewise. Genome Res 2004, 14:988-995.
  • [63]Wyman SK, Jansen RK, Boore JL: Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20:3252.
  • [64]Gruner DS: Regressions of length and width to predict arthropod biomass in the Hawaiian Islands. Pac Sci 2003, 57:325-336.
  • [65]Ganihar S: Biomass estimates of terrestrial arthropods based on body length. J Biosci 1997, 22:219-224.
  • [66]Hódar J: The use of regression equations for the estimation of prey length and biomass in diet studies of insectivore vertebrates. Miscellània Zoologica 1997, 20:1-10.
  • [67]Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, Tang M, Fu R, Li J, Huang Q: Software and supporting material for: “Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification”. GigaScience 2013. http://dx.doi.org/10.5524/100046 webcite
  文献评价指标  
  下载次数:63次 浏览次数:32次