期刊论文详细信息
Diagnostic Pathology
Analyzing huge pathology images with open source software
Marc Lartaud4  Alexandre Granier3  Chloé Gerin1  Mathilde Badoual5  David Ameisen2  Christophe Deroulers5 
[1] Present address: CNRS, UMR 8608, IPN, Univ Paris-Sud, Orsay F-91405, France;Univ Paris Diderot, Laboratoire de pathologie, Hôpital Saint-Louis APHP, INSERM UMR-S 728, Paris F-75010, France;MRI-Montpellier RIO Imaging, CRBM, Montpellier F-34293, France;CIRAD, Montpellier CEDEX 5 F-34398, France;Univ Paris Diderot, Laboratoire IMNC, UMR 8165 CNRS, Univ Paris-Sud, Orsay F-91405, France
关键词: NDPI;    ImageJ;    Systems biology;    Virtual slides;    Image processing;    Digital pathology;   
Others  :  806780
DOI  :  10.1186/1746-1596-8-92
 received in 2013-05-02, accepted in 2013-05-22,  发布年份 2013
PDF
【 摘 要 】

Background

Digital pathology images are increasingly used both for diagnosis and research, because slide scanners are nowadays broadly available and because the quantitative study of these images yields new insights in systems biology. However, such virtual slides build up a technical challenge since the images occupy often several gigabytes and cannot be fully opened in a computer’s memory. Moreover, there is no standard format. Therefore, most common open source tools such as ImageJ fail at treating them, and the others require expensive hardware while still being prohibitively slow.

Results

We have developed several cross-platform open source software tools to overcome these limitations. The NDPITools provide a way to transform microscopy images initially in the loosely supported NDPI format into one or several standard TIFF files, and to create mosaics (division of huge images into small ones, with or without overlap) in various TIFF and JPEG formats. They can be driven through ImageJ plugins. The LargeTIFFTools achieve similar functionality for huge TIFF images which do not fit into RAM. We test the performance of these tools on several digital slides and compare them, when applicable, to standard software. A statistical study of the cells in a tissue sample from an oligodendroglioma was performed on an average laptop computer to demonstrate the efficiency of the tools.

Conclusions

Our open source software enables dealing with huge images with standard software on average computers. They are cross-platform, independent of proprietary libraries and very modular, allowing them to be used in other open source projects. They have excellent performance in terms of execution speed and RAM requirements. They open promising perspectives both to the clinician who wants to study a single slide and to the research team or data centre who do image analysis of many slides on a computer cluster.

Virtual slides

The virtual slide(s) for this article can be found here:

http://www.diagnosticpathology.diagnomx.eu/vs/5955513929846272 webcite

【 授权许可】

   
2013 Deroulers et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708100123655.pdf 1482KB PDF download
Figure 5. 38KB Image download
Figure 4. 101KB Image download
Figure 3. 24KB Image download
Figure 2. 72KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Diamond J, McCleary D: Virtual microscopy. In Advanced Techniques in Diagnostic Cellular Pathology. Edited by Hannon-Fletcher M, Maxwell P. Chichester UK: John Wiley & Sons, Ltd;; 2009.
  • [2]Ameisen D, Yunès JB, Deroulers C, Perrier V, Bouhidel F, Battistella M, Legrès L, Janin A, Bertheau P: Stack or Trash? Fast quality assessment of virtual slides. Diagn Pathol 2013. in press
  • [3]García Rojo M, Castro AM, Gonçalves L: COST action “EuroTelepath”: digital pathology integration in electronic health record, including primary care centres. Diagn Pathol 2011, 6(Suppl 1):S6. BioMed Central Full Text
  • [4]Ameisen D: Intégration des lames virtuelles dans le dossier patient électronique. PhD thesis. 2013. Univ Paris Diderot-Paris 7
  • [5]Collan Y, Torkkeli T, Personen E, Jantunen E, Kosma VM: Application of morphometry in tumor pathology. Anal Quant Cytol Histol 1987, 9(2):79-88.
  • [6]Wolfe P, Murphy J, McGinley J, Zhu Z, Jiang W, Gottschall E, Thompson H: Using nuclear morphometry to discriminate the tumorigenic potential of cells: A comparison of statistical methods. Cancer Epidemiol Biomarkers Prev 2004, 13(6):976-988.
  • [7]Gürcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B: Histopathological image analysis: a review. Biomed Eng, IEEE Rev 2009, 2:147-171.
  • [8]Gerin C, Pallud J, Deroulers C, Varlet P, Oppenheim C, Roux FX, Chrétien F, Thomas SR, Grammaticos B, Badoual M: Quantitative characterization of the imaging limits of diffuse low-grade oligodendrogliomas. Neuro-Oncol 2013.. in press [http://dx.doi.org/10.1093/neuonc/not072 webcite ]
  • [9]Wienert S, Heim D, Kotani M, Lindequist B, Stenzinger A, Ishii M, Hufnagl P, Beil M, Dietel M, Denkert C, Klauschen F: CognitionMaster: an object-based image analysis framework. Diagn Pathol 2013, 8:34. BioMed Central Full Text
  • [10]Gunduz C, Yener B, Gultekin SH: The cell graphs of cancer. Bioinformatics 2004, 20(Suppl 1):i145-i151.
  • [11]Gunduz C, Gultekin SH, Yener B: Augmented cell-graphs for automated cancer diagnosis. Bioinformatics 2005, 21(Suppl 2):ii7-ii12.
  • [12]West NP, Dattani M, McShane P, Hutchins G, Grabsch J, Mueller W, Treanor D, Quirke P, Grabsch H: The proportion of tumour cells is an independent predictor for survival in colorectal cancer patients. Br J Cancer 2010, 102:1519-1523.
  • [13]Chang H, Han J, Borowsky A, Loss L, Gray JW, Spellman PT, Parvin B: Invariant delineation of nuclear architecture in Glioblastoma multiforme for clinical and molecular association. IEEE Trans Med Imag 2013, 32(4):670-682.
  • [14]Kayser K, Radziszowski D, Bzdyl P, Sommer R, Kayser G: Towards an automated virtual slide screening: theoretical considerations and practical experiences of automated tissue-based virtual diagnosis to be implemented in the internet. Diagn Pathol 2006, 1:10. BioMed Central Full Text
  • [15]PLGA Foundation: Meta analysis low grade glioma database project. 2012. [http://www.fightplga.org/research/PLGA-Sponsored_Projects/MetaAnalysis webcite]
  • [16]García Rojo M, Bueno G, Slodkowska J: Review of imaging solutions for integrated quantitative immunohistochemistry in the Pathology daily practice. Folia Histochem Cytobiol 2009, 47(3):349-354.
  • [17]Rasband WS: ImageJ. 1997-2012. [http://imagej.nih.gov/ij/ webcite]
  • [18]ImageMagick Studio LLC: ImageMagick. 2013. [http://www.imagemagick.org/ webcite]
  • [19]GraphicsMagick Group: GraphicsMagick. 2013. [http://www.graphicsmagick.org/ webcite]
  • [20]Kong J, Cooper LAD, Wang F, Chisolm C, Moreno CS, Kurc TM, Widener PM, Brat DJ, Saltz JH: A comprehensive framework for classification of nuclei in digital microscopy imaging: An application to diffuse gliomas. In Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on. : ; 2011:2128-2131.
  • [21]Kayser K, Görtler J, Borkenfeld S, Kayser G: Grid computing in image analysis. Diagn Pathol 2011, 6(Suppl 1):S12. BioMed Central Full Text
  • [22]Granier A, Olivier M, Laborie S, Vaudescal S, Baecker V, Tran-Aupiais C: WIDE (Web Images and Data Environment). 2013. [http://www.mri.cnrs.fr/index.php?m=81 webcite]
  • [23]Kayser K: Introduction of virtual microscopy in routine surgical pathology — a hypothesis and personal view from Europe. Diagn Pathol 2012, 7:48. BioMed Central Full Text
  • [24]Goode A, Satyanarayanan M: A vendor-neutral library and viewer for whole-slide images. 2008. Tech. Rep. Technical Report CMU-CS-08-136, Computer Science Department, Carnegie Mellon University [ http://reports-archive.adm.cs.cmu.edu/anon/2008/CMU-CS-08-136.pdf webcite]
  • [25]Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, MacDonald D, Tarkowska A, Sticco C, Hill E, Rossner M, Eliceiri KW, Swedlow JR: Metadata matters: access to image data in the real world. J Cell Biol 2010, 198(5):777-782.
  • [26]Khushi M, Edwards G, de Marcos DA, Carpenter JE, Graham JD, Clarke CL: Open source tools for management and archiving of digital microscopy data to allow integration with patient pathology and treatment information. Diagn Pathol 2013, 8:22. BioMed Central Full Text
  • [27]Sam Leffler S, the authors of LibTIFF: LibTIFF – TIFF Library and Utilities. 2012. [http://www.remotesensing.org/libtiff/ webcite]
  • [28]Lane TG, Vollbeding G: The Independent JPEG Group’s JPEG software. 2013. [http://www.ijg.org/ webcite]
  • [29]Lane TG, Vollbeding G, the authors of the libjpeg-turbo software: libjpeg-turbo. 2012. [http://libjpeg-turbo.virtualgl.org/ webcite]
  • [30]Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ 25 years of image analysis. Nat Methods 2012, 9:671-675.
  • [31]Sacha J: Image IO Plugin Bundle. 2004. [http://ij-plugins.sourceforge.net/plugins/imageio/ webcite]
  • [32]Sun Microsystems Inc: Java Advanced Library 1.1.3. 2006. [http://www.oracle.com/technetwork/java/current-142188.html webcite]
  • [33]BigTIFF Design 2012. [http://www.remotesensing.org/libtiff/bigtiffdesign.html webcite]
  • [34]The BigTIFF File Format Proposal 2008. [http://www.awaresystems.be/imaging/tiff/bigtiff.html webcite]
  文献评价指标  
  下载次数:60次 浏览次数:18次