| Cardiovascular Diabetology | |
| Targeting metabolic disturbance in the diabetic heart | |
| Óscar Lorenzo2  José Tuñón1  Jesús Egido2  Elisa Ramírez2  Belén Picatoste2  Jesús Fuentes-Antrás1  | |
| [1] Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid 28040, Spain;Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain | |
| 关键词: Nod-like receptor-3; Toll-like receptor-4; Fatty acid translocase/cluster of differentiation-36; Peroxisome proliferator activated receptor agonists; Statins; Advanced glycation end-products; Glucagon-like protein-1; Dipeptidyl peptidase-4; Metformin; Diabetic cardiomyopathy; | |
| Others : 1123409 DOI : 10.1186/s12933-015-0173-8 |
|
| received in 2014-11-04, accepted in 2015-01-02, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Diabetic cardiomyopathy is defined as ventricular dysfunction initiated by alterations in cardiac energy substrates in the absence of coronary artery disease and hypertension. In addition to the demonstrated burden of cardiovascular events associated with diabetes, diabetic cardiomyopathy partly explains why diabetic patients are subject to a greater risk of heart failure and a worse outcome after myocardial ischemia. The raising prevalence and accumulating costs of cardiovascular disease in diabetic patients underscore the deficiencies of tertiary prevention and call for a shift in medical treatment. It is becoming increasingly clearer that the effective prevention and treatment of diabetic cardiomyopathy require measures to regulate the metabolic derangement occurring in the heart rather than merely restoring suitable systemic parameters. Recent research has provided deeper insight into the metabolic etiology of diabetic cardiomyopathy and numerous heart-specific targets that may substitute or reinforce current strategies. From both experimental and translational perspectives, in this review we first discuss the progress made with conventional therapies, and then focus on the need for prospective metabolic targets that may avert myocardial vulnerability and functional decline in next-generation diabetic care.
【 授权许可】
2015 Fuentes-Antrás et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150216032445873.pdf | 1320KB | ||
| Figure1. | 78KB | Image |
【 图 表 】
Figure1.
【 参考文献 】
- [1]Diabetes Atlas International Diabetes Federation. [http://www.idf.org/diabetesatlas]
- [2]Bell DSH: Diabetic Cardiomyopathy. Diabetes Care 2003, 26:2949-51.
- [3]Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil JG: Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care 2001, 24:5-10.
- [4]Kiencke S, Handschin R, von Dahlen R, Muser J, Brunner-Larocca HP, Schumann J, et al.: Pre-clinical diabetic cardiomyopathy: prevalence, screening, and outcome. Eur J Heart Fail 2010, 12:951-7.
- [5]Bugger H, Abel ED: Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 2014, 57(4):660-71.
- [6]Manjarrez-Gutiérrez G, Hernández-Chávez V, Neri-Gómez T, Boyzo-Montes de Oca A, Mondragón-Herrera JA, Hernández-Rodríguez J: Anatomopathological findings during development of diabetic cardiomyopathy in rats. Cir Cir 2014, 82:11-9.
- [7]Phillips RA, Krakoff LR, Dunaif A, Finegood DT, Gorlin R, Shimabukuro S: Relation among left ventricular mass, insulin resistance, and blood pressure in nonobese subjects. J Clin Endocrinol Metab 1998, 83:4284-8.
- [8]Moore A, Shindikar A, Fomison-Nurse I, Riu F, Munasinghe PE, Ram TP, et al.: Rapid onset of cardiomyopathy in STZ-induced female diabetic mice involves the downregulation of pro-survival Pim-1. Cardiovasc Diabetol 2014, 13:68. BioMed Central Full Text
- [9]Mazzone T: Intensive Glucose Lowering and Cardiovascular Disease Prevention in Diabetes Reconciling the Recent Clinical Trial Data. Circulation 2010, 122:2201-11.
- [10]Hamblin M, Friedman DB, Hill S, Caprioli RM, Smith HM, Hill MF: Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. J Mol Cell Cardiol 2007, 42:884-95.
- [11]Palomer X, Salvadó L, Barroso E, Vázquez-Carrera M: An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int J Cardiol 2013, 168:3160-72.
- [12]Zhang S, Liu H, Amarsingh GV, Cheung CCH, Hogl S, Narayanan U, et al.: Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol 2014, 13:100. BioMed Central Full Text
- [13]Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). The Lancet. 1998;352:854–865.
- [14]Eurich DT, Weir DL, Majumdar SR, Tsuyuki RT, Johnson JA, Tjosvold L et al. Comparative Safety and Effectiveness of Metformin in Patients with Diabetes and Heart Failure: Systematic Review of Observational Studies Involving 34000 Patients. Circ Heart Fail.2013;CIRCHEARTFAILURE.112.000162.
- [15]Verma S, McNeill JH: Metformin improves cardiac function in isolated streptozotocin-diabetic rat hearts. Am J Physiol 1994, 266(2 Pt 2):H714-9.
- [16]Da Silva D, Ausina P, Alencar EM, Coelho WS, Zancan P, Sola-Penna M: Metformin reverses hexokinase and phosphofructokinase downregulation and intracellular distribution in the heart of diabetic mice. IUBMB Life 2012, 64:766-74.
- [17]Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, et al.: Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011, 60:1770-8.
- [18]Kim J, Wietecha TA, Dai D-F, Sullivan B, Sta Teresa A, Hudkins KL, et al.: Metformin Prevents the Development of Cardiomyopathy and Cardiac Dysfunction in Diabetogenic Diet-fed BTBRob/+ Mice (Abstract). Circulation 2012, 126:A17997. [ http://circ.ahajournals.org/cgi/content/meeting_abstract/126/21_MeetingAbstracts/A17997 ]
- [19]Forcheron F, Basset A, Abdallah P, Carmine PD, Gadot N, Beylot M: Diabetic cardiomyopathy: effects of fenofibrate and metformin in an experimental model – the Zucker diabetic rat. Cardiovasc Diabetol 2009, 8:16. BioMed Central Full Text
- [20]Picatoste B, Ramírez E, Caro-Vadillo A, Iborra C, Egido J, Tuñón J, et al.: Sitagliptin reduces cardiac apoptosis, hypertrophy and fibrosis primarily by insulin-dependent mechanisms in experimental type-II diabetes. Potential roles of GLP-1 isoforms. PLoS One 2013, 8:e78330.
- [21]Rösen P, Wiernsperger NF: Metformin delays the manifestation of diabetes and vascular dysfunction in Goto-Kakizaki rats by reduction of mitochondrial oxidative stress. Diabetes Metab Res Rev 2006, 22:323-30.
- [22]Quentin T, Steinmetz M, Poppe A, Thoms S: Metformin differentially activates ER stress signaling pathways without inducing apoptosis. Dis Model Mech 2012, 5:259-69.
- [23]Mozaffari MS, Allo S, Schaffer SW: The effect of sulfonylurea therapy on defective calcium movement associated with diabetic cardiomyopathy. Can J Physiol Pharmacol 1989, 67:1431-6.
- [24]Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M: ADVANCE Collaborative Group: Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008, 358:2560-72.
- [25]Shida T, Nozawa T, Sobajima M, Ihori H, Matsuki A, Inoue H: Fluvastatin-induced reduction of oxidative stress ameliorates diabetic cardiomyopathy in association with improving coronary microvasculature. Heart Vessels 2014, 29(4):532-41.
- [26]Quidgley J, Cruz N, Crespo MJ: Atorvastatin improves systolic function, but does not prevent the development of dilated cardiomyopathy in streptozotocin-induced diabetic rats. Ther Adv Cardiovasc Dis 2014, 8(4):133-44.
- [27]Baraka A, AbdelGawad H: Targeting apoptosis in the heart of streptozotocin-induced diabetic rats. J Cardiovasc Pharmacol Ther 2010, 15:175-81.
- [28]Hemmeryckx B, Swinnen M, Gallacher DJ, Rong Lu H, Roger Lijnen H: Effect of sitagliptin treatment on metabolism and cardiac function in genetic diabetic mice. Eur J Pharmacol 2014, 723:175-80.
- [29]Hemmeryckx B, Hoylaerts MF, Gallacher DJ, Rong Lu H, Himmelreich U, D’hooge J, et al.: Does rosiglitazone affect adiposity and cardiac function in genetic diabetic mice? Eur J Pharmacol 2013, 700:23-31.
- [30]Lenski M, Kazakov A, Marx N, Böhm M, Laufs U: Effects of DPP-4 inhibition on cardiac metabolism and function in mice. J Mol Cell Cardiol 2011, 51:906-18.
- [31]Aasum E, Belke DD, Severson DL, Riemersma RA, Cooper M, Andreassen M, et al.: Cardiac function and metabolism in Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. Am J Physiol Heart Circ Physiol 2002, 283:H949-57.
- [32]Carley AN, Semeniuk LM, Shimoni Y, Aasum E, Larsen TS, Berger JP, et al.: Treatment of type 2 diabetic db/db mice with a novel PPARgamma agonist improves cardiac metabolism but not contractile function. Am J Physiol Endocrinol Metab 2004, 286:E449-55.
- [33]Sidell RJ, Cole MA, Draper NJ, Desrois M, Buckingham RE, Clarke K: Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the zucker Fatty rat heart. Diabetes 2002, 51:1110-7.
- [34]Liu J, Liu Y, Chen L, Wang Y, Li J: Glucagon-Like Peptide-1 Analog Liraglutide Protects against Diabetic Cardiomyopathy by the Inhibition of the Endoplasmic Reticulum Stress Pathway. J Diabetes Res 2013, 2013:630537.
- [35]Noyan-Ashraf MH, Shikatani EA, Schuiki I, Mukovozov I, Wu J, Li R-K, et al.: A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation 2013, 127:74-85.
- [36]Mells JE, Fu PP, Sharma S, Olson D, Cheng L, Handy JA, et al.: Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol - Gastrointest Liver Physiol 2012, 302:G225-35.
- [37]Luo B, Li B, Wang W, Liu X, Liu X, Xia Y, Zhang C, Zhang Y, Zhang M, An F: Rosuvastatin Alleviates Diabetic Cardiomyopathy by Inhibiting NLRP3 Inflammasome and MAPK Pathways in a Type 2 Diabetes Rat Model. Cardiovasc Drugs Ther Spons Int Soc Cardiovasc Pharmacother 2014, 28(1):33-43.
- [38]Aasum E, Khalid AM, Gudbrandsen OA, How O-J, Berge RK, Larsen TS: Fenofibrate modulates cardiac and hepatic metabolism and increases ischemic tolerance in diet-induced obese mice. J Mol Cell Cardiol 2008, 44:201-9.
- [39]Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al.: Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013, 369:1317-26.
- [40]Ravassa S, Barba J, Coma-Canella I, Huerta A, López B, González A, et al.: The activity of circulating dipeptidyl peptidase-4 is associated with subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2013, 12:143. BioMed Central Full Text
- [41]Barylski M, Nikolic D, Banach M, Toth PP, Montalto G, Rizzo M. STATINS AND NEW-ONSET DIABETES. Curr Pharm Des. 2013.
- [42]Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJP, Komajda M, et al.: Effects of Torcetrapib in Patients at High Risk for Coronary Events. N Engl J Med 2007, 357:2109-22.
- [43]Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al.: Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005, 366:1849-61.
- [44]Komajda M, McMurray JJV, Beck-Nielsen H, Gomis R, Hanefeld M, Pocock SJ, et al.: Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J 2010, 31:824-31.
- [45]Giles TD, Miller AB, Elkayam U, Bhattacharya M, Perez A: Pioglitazone and heart failure: results from a controlled study in patients with type 2 diabetes mellitus and systolic dysfunction. J Card Fail 2008, 14:445-52.
- [46]Semeniuk LM, Kryski AJ, Severson DL: Echocardiographic assessment of cardiac function in diabeticdb/db and transgenic db/db-hGLUT4 mice. Am J Physiol - Heart Circ Physiol 2002, 283:H976-82.
- [47]Chambers KT, Leone TC, Sambandam N, Kovacs A, Wagg CS, Lopaschuk GD, et al.: Chronic Inhibition of Pyruvate Dehydrogenase in Heart Triggers an Adaptive Metabolic Response. J Biol Chem 2011, 286:11155-62.
- [48]Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS, et al.: IGF-1 Overexpression Inhibits the Development of Diabetic Cardiomyopathy and Angiotensin II–Mediated Oxidative Stress. Diabetes 2001, 50:1414-24.
- [49]Liu L, Trent CM, Fang X, Son N-H, Jiang H, Blaner WS et al. Cardiomyocyte specific loss of diacylglycerol acyl transferase 1 (DGAT1) reproduces the abnormalities in lipids found in severe heart failure. J Biol Chem. 2014.
- [50]Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen Y-T, et al.: Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther 2006, 317:1106-13.
- [51]Nagashima M, Watanabe T, Terasaki M, Tomoyasu M, Nohtomi K, Kim-Kaneyama J, et al.: Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia 2011, 54:2649-59.
- [52]Zhong J, Rao X, Rajagopalan S: An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 2013, 226:305-14.
- [53]Witteles RM, Keu KV, Quon A, Tavana H, Fowler MB: Dipeptidyl peptidase 4 inhibition increases myocardial glucose uptake in nonischemic cardiomyopathy. J Card Fail 2012, 18:804-9.
- [54]Read PA, Khan FZ, Heck PM, Hoole SP, Dutka DP: DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging 2010, 3:195-201.
- [55]Ma H, Li S-Y, Xu P, Babcock SA, Dolence EK, Brownlee M, et al.: Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med 2009, 13:1751-64.
- [56]Brouwers O, de Vos-Houben JMJ, Niessen PMG, Miyata T, van Nieuwenhoven F, Janssen BJA, et al.: Mild oxidative damage in the diabetic rat heart is attenuated by glyoxalase-1 overexpression. Int J Mol Sci 2013, 14:15724-39.
- [57]Hu Y, Belke D, Suarez J, Swanson E, Clark R, Hoshijima M, et al.: Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res 2005, 96:1006-13.
- [58]Son N-H, Yu S, Tuinei J, Arai K, Hamai H, Homma S, et al.: PPARγ-induced cardiolipotoxicity in mice is ameliorated by PPARα deficiency despite increases in fatty acid oxidation. J Clin Invest 2010, 120:3443-54.
- [59]Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, et al.: Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 2007, 117:3930-9.
- [60]Yang J, Sambandam N, Han X, Gross RW, Courtois M, Kovacs A, et al.: CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res 2007, 100:1208-17.
- [61]Duncan JG, Bharadwaj KG, Fong JL, Mitra R, Sambandam N, Courtois MR, et al.: Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-alpha activators. Circulation 2010, 121:426-35.
- [62]Kuramoto K, Sakai F, Yoshinori N, Nakamura TY, Wakabayashi S, Kojidani T, Haraguchi T, Hirose F, Osumi T: Deficiency of a lipid droplet protein, Perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction. Mol Cell Biol 2014, 34(14):2721-31.
- [63]Pulinilkunnil T, Kienesberger PC, Nagendran J, Waller TJ, Young ME, Kershaw EE, et al.: Myocardial Adipose Triglyceride Lipase Overexpression Protects Diabetic Mice From the Development of Lipotoxic Cardiomyopathy. Diabetes 2013, 62:1464-77.
- [64]Pulinilkunnil T, Kienesberger PC, Nagendran J, Sharma N, Young ME, Dyck JRB: Cardiac-specific adipose triglyceride lipase overexpression protects from cardiac steatosis and dilated cardiomyopathy following diet-induced obesity. Int J Obes 2014, 38(2):205-15.
- [65]Ueno M, Suzuki J, Zenimaru Y, Takahashi S, Koizumi T, Noriki S, et al.: Cardiac overexpression of hormone-sensitive lipase inhibits myocardial steatosis and fibrosis in streptozotocin diabetic mice. Am J Physiol Endocrinol Metab 2008, 294:E1109-18.
- [66]Suzuki H, Kayama Y, Sakamoto M, Iuchi H, Shimizu I, Yoshino T et al. Arachidonate 12/15-Lipoxygenase-Induced Inflammation and Oxidative Stress Are Involved in the Development of Diabetic Cardiomyopathy. Diabetes. 2014.Sep 3.
- [67]Matsui H, Yokoyama T, Sekiguchi K, Iijima D, Sunaga H, Maniwa M, et al.: Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes. PLoS One 2012, 7:e33283.
- [68]Liu L, Yu S, Khan RS, Homma S, Schulze PC, Blaner WS, et al.: Diacylglycerol acyl transferase 1 overexpression detoxifies cardiac lipids in PPARγ transgenic mice. J Lipid Res 2012, 53:1482-92.
- [69]Liu L, Shi X, Bharadwaj KG, Ikeda S, Yamashita H, Yagyu H, et al.: DGAT1 Expression Increases Heart Triglyceride Content but Ameliorates Lipotoxicity. J Biol Chem 2009, 284:36312-23.
- [70]Chou I-P, Chiu Y-P, Ding S-T, Liu B-H, Lin YY, Chen C-Y: Adiponectin receptor 1 overexpression reduces lipid accumulation and hypertrophy in the heart of diet-induced obese mice - possible involvement of oxidative stress and autophagy. Endocr Res 2014, 39(4):173-9.
- [71]Park M, Wu D, Park T, Choi C, Li R-K, Cheng KKY, et al.: APPL1 transgenic mice are protected from high-fat diet-induced cardiac dysfunction. Am J Physiol Endocrinol Metab 2013, 305:E795-804.
- [72]Yokoyama M, Yagyu H, Hu Y, Seo T, Hirata K, Homma S, et al.: Apolipoprotein B Production Reduces Lipotoxic Cardiomyopathy studies in heart-specific lipoprotein lipase transgenic mouse. J Biol Chem 2004, 279:4204-11.
- [73]Haitao Z, Zhongwei L, Kunlun C, Xin D, Chuan Q, Dengfeng G: ASSA13-06-6 Prevention of Cardiac Remodelling by Gene Silencing of Toll-Like Receptor-4 in Mice with Diabetic Cardiomyopathy. Heart 2013, 99(Suppl 1):A35-A35.
- [74]Zhang Y, Peng T, Zhu H, Zheng X, Zhang X, Jiang N, et al.: Prevention of hyperglycemia-induced myocardial apoptosis by gene silencing of Toll-like receptor-4. J Transl Med 2010, 8:133.
- [75]Dong B, Qi D, Yang L, Huang Y, Xiao X, Tai N, et al.: TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes. Am J Physiol Heart Circ Physiol 2012, 303:H732-42.
- [76]Wang W-K, Wang B, Lu Q-H, Zhang W, Qin W-D, Liu X-J, Liu X-Q, An F-S, Zhang Y, Zhang M-X: Inhibition of high-mobility group box 1 improves myocardial fibrosis and dysfunction in diabetic cardiomyopathy. Int J Cardiol 2014, 172(1):202-12.
- [77]Bergenstal RM, Wysham C, Macconell L, Malloy J, Walsh B, Yan P, et al.: Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): a randomised trial. Lancet 2010, 376:431-9.
- [78]Little WC, Zile MR, Kitzman DW, Hundley WG, O’Brien TX, de Groof RC: The Effect of Alagebrium Chloride (ALT-711), a Novel Glucose Cross-Link Breaker, in the Treatment of Elderly Patients With Diastolic Heart Failure. J Card Fail 2005, 11:191-5.
- [79]Kranstuber AL, Del Rio C, Biesiadecki BJ, Hamlin RL, Ottobre J, Gyorke S, et al.: Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front Physiol 2012, 3:292.
- [80]Heart Protection Study Collaborative Group: MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial Lancet 2002, 360:7-22.
- [81]Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HAW, Livingstone SJ, et al.: Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004, 364:685-96.
- [82]Gæde P, Lund-Andersen H, Parving H-H, Pedersen O: Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008, 358:580-91.
- [83]Dormandy JA, Charbonnel B, Eckland DJA, Erdmann E, Massi-Benedetti M, Moules IK, et al.: Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005, 366:1279-89.
- [84]Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, et al.: The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002, 109:121-30.
- [85]Palomer X, Capdevila-Busquets E, Botteri G, Salvadó L, Barroso E, Davidson MM, et al.: PPARβ/δ attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. Int J Cardiol 2014, 174:110-8.
- [86]Alvarez-Guardia D, Palomer X, Coll T, Serrano L, Rodríguez-Calvo R, Davidson MM, et al.: PPARβ/δ activation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochim Biophys Acta 1811, 2011:59-67.
- [87]Bedu E, Wahli W, Desvergne B: Peroxisome proliferator-activated receptor beta/delta as a therapeutic target for metabolic diseases. Expert Opin Ther Targets 2005, 9:861-73.
- [88]van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P: Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 2011, 92:10-8.
- [89]Luiken JJFP, Arumugam Y, Bell RC, Calles-Escandon J, Tandon NN, Glatz JFC, et al.: Changes in fatty acid transport and transporters are related to the severity of insulin deficiency. Am J Physiol Endocrinol Metab 2002, 283:E612-21.
- [90]Coort SLM, Hasselbaink DM, Koonen DPY, Willems J, Coumans WA, Chabowski A, et al.: Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats. Diabetes 2004, 53:1655-63.
- [91]Glatz JFC, Angin Y, Steinbusch LKM, Schwenk RW, Luiken JJFP: CD36 as a target to prevent cardiac lipotoxicity and insulin resistance. Prostaglandins Leukot Essent Fatty Acids 2013, 88:71-7.
- [92]Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, et al.: CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 2010, 11:155-61.
- [93]Ehrentraut H, Weber C, Ehrentraut S, Schwederski M, Boehm O, Knuefermann P, et al.: The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. Eur J Heart Fail 2011, 13:602-10.
- [94]Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, et al.: CD36 coordinates NLRP3 inflammasome activation by facilitating the intracellular nucleation from soluble to particulate ligands in sterile inflammation. Nat Immunol 2013, 14:812-20.
- [95]Fuentes-Antras J, Loan AM, Tuñón J, Egido J, Lorenzo O: Activation of Toll-Like Receptors and Inflammasome Complexes in the Diabetic Cardiomyopathy-Associated Inflammation. Int J Endocrinol 2014, 2014:847827.
- [96]Pei XM, Yung BY, Yip SP, Chan LW, Wong CS, Ying M, et al. Protective effects of desacyl ghrelin on diabetic cardiomyopathy. Acta Diabetol. 2014. Sept 6.
PDF