期刊论文详细信息
Journal of Hematology & Oncology
microRNA-26a suppresses recruitment of macrophages by down-regulating macrophage colony-stimulating factor expression through the PI3K/Akt pathway in hepatocellular carcinoma
Hui-Chuan Sun1  Hao Cai1  De-Ning Ma1  Bo-Gen Ye1  Yuan-Yuan Zhang1  Ning Zhang1  Jian Kong3  Dong-Mei Gao1  Wen-Quan Wang2  Jian-Yang Ao1  Xiao-Dong Zhu1  Zong-Tao Chai1 
[1] Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, People’s Republic of China;Pancreatic Cancer Institute, Fudan University, Shanghai, People’s Republic of China;Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
关键词: Macrophages;    M-CSF;    Hepatocellular carcinoma;    microRNA-26a;   
Others  :  1217409
DOI  :  10.1186/s13045-015-0150-4
 received in 2015-02-20, accepted in 2015-05-06,  发布年份 2015
PDF
【 摘 要 】

Background

microRNAs (miRNAs) have been reported to modulate macrophage colony-stimulating factor (M-CSF) and macrophages. The aim of this study was to find whether miR-26a can suppress M-CSF expression and the recruitment of macrophages.

Methods

Hepatocellular carcinoma (HCC) cell lines with decreased or increased expression of miR-26a were established in a previous study. M-CSF expression by tumor cells was measured by enzyme-linked immunosorbent assay, and cell migration assays were used to explore the effect of HCC cell lines on macrophage recruitment in vitro. Real-time PCR measured a panel of mRNAs expressed by macrophages. Xenograft models were used to observe tumor growth. Immunohistochemistry was conducted to study the relation between miR-26a expression and M-CSF expression and macrophage recruitment in patients with HCC.

Results

Ectopic expression of miR-26a reduced expression of M-CSF. The conditioned medium (CM) from HepG2 cells that overexpressed miR-26a reduced the migration ability of THP-1 cells stimulated by phorbol myristate acetate (PMA) increased expression of interleukin (IL)-12b or IL-23 mRNA and decreased expression of chemokine (C-C motif) ligand (CCL)22, CCL17, and IL-10 mRNA, in comparison to the medium from the parental HepG2 cells. These effects could be interrupted by the PI3K/Akt pathway inhibitor LY294002. Ectopic expression of miR-26a in HCC cells suppressed tumor growth, M-CSF expression, and infiltration of macrophages in tumors. Similar results were also found when using HCCLM3 cells. Furthermore, the expression of miR-26a was inversely correlated with M-CSF expression and macrophage infiltration in tumor tissues from patients with HCC.

Conclusions

miR-26a expression reduced M-CSF expression and recruitment of macrophages in HCC.

【 授权许可】

   
2015 Chai et al.

【 预 览 】
附件列表
Files Size Format View
20150706105558356.pdf 3085KB PDF download
Fig. 5. 163KB Image download
Fig 4. 149KB Image download
Fig. 3. 49KB Image download
Fig. 2. 130KB Image download
Fig. 1. 108KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig 4.

Fig. 5.

【 参考文献 】
  • [1]Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012; 379:1245-55.
  • [2]Tang ZY. Hepatocellular carcinoma surgery—review of the past and prospects for the 21st century. J Surg Oncol. 2005; 91:95-6.
  • [3]Yang JD, Nakamura I, Roberts LR. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol. 2011; 21:35-43.
  • [4]Marongiu F, Serra MP, Sini M, Angius F, Laconi E. Clearance of senescent hepatocytes in a neoplastic-prone microenvironment delays the emergence of hepatocellular carcinoma. Aging (Albany NY). 2014; 6:26-34.
  • [5]Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA et al.. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006; 10:99-111.
  • [6]Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ et al.. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol. 2008; 26:2707-16.
  • [7]Mantovani A, Germano G, Marchesi F, Locatelli M, Biswas SK. Cancer-promoting tumor-associated macrophages: new vistas and open questions. Eur J Immunol. 2011; 41:2522-5.
  • [8]Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009; 86:1065-73.
  • [9]Porta C, Larghi P, Rimoldi M, Totaro MG, Allavena P, Mantovani A et al.. Cellular and molecular pathways linking inflammation and cancer. Immunobiology. 2009; 214:761-77.
  • [10]Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010; 22:231-7.
  • [11]Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010; 141:39-51.
  • [12]Kuang DM, Wu Y, Chen N, Cheng J, Zhuang SM, Zheng L. Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes. Blood. 2007; 110:587-95.
  • [13]Kuang DM, Peng C, Zhao Q, Wu Y, Chen MS, Zheng L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells. Hepatology. 2010; 51:154-64.
  • [14]Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C et al.. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009; 206:1327-37.
  • [15]Ding T, Xu J, Wang F, Shi M, Zhang Y, Li SP et al.. High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection. Hum Pathol. 2009; 40:381-9.
  • [16]Fujita N, Nishie A, Aishima S, Kubo Y, Asayama Y, Ishigami K et al.. Role of tumor-associated macrophages in the angiogenesis of well-differentiated hepatocellular carcinoma: pathological-radiological correlation. Oncol Rep. 2014; 31:2499-505.
  • [17]Wiktor-Jedrzejczak W, Gordon S. Cytokine regulation of the macrophage (M phi) system studied using the colony stimulating factor-1-deficient op/op mouse. Physiol Rev. 1996; 76:927-47.
  • [18]Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunol Today. 1992; 13:265-70.
  • [19]Zins K, Abraham D, Sioud M, Aharinejad S. Colon cancer cell-derived tumor necrosis factor-alpha mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res. 2007; 67:1038-45.
  • [20]Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004; 4:71-8.
  • [21]Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006; 124:263-6.
  • [22]Jia JB, Wang WQ, Sun HC, Zhu XD, Liu L, Zhuang PY et al.. High expression of macrophage colony-stimulating factor-1 receptor in peritumoral liver tissue is associated with poor outcome in hepatocellular carcinoma after curative resection. Oncologist. 2010; 15:732-43.
  • [23]Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM et al.. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009; 49:1571-82.
  • [24]Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH et al.. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 2010; 51:836-45.
  • [25]Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP, Zhuang SM. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009; 50:113-21.
  • [26]Anand S. A brief primer on microRNAs and their roles in angiogenesis. Vasc Cell. 2013; 5:2. BioMed Central Full Text
  • [27]Chai ZT, Kong J, Zhu XD, Zhang YY, Lu L, Zhou JM et al.. MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2alpha/Akt/HIF-1alpha pathway in hepatocellular carcinoma. PLoS One. 2013; 8:e77957.
  • [28]Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD et al.. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008; 15:272-84.
  • [29]Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C et al.. Tumour angiogenesis regulation by the miR-200 family. Nat Commun. 2013; 4:2427.
  • [30]Mitra AK, Zillhardt M, Hua Y, Tiwari P, Murmann AE, Peter ME et al.. MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov. 2012; 2:1100-8.
  • [31]Bezman NA, Chakraborty T, Bender T, Lanier LL. miR-150 regulates the development of NK and iNKT cells. J Exp Med. 2011; 208:2717-31.
  • [32]Zhu K, Pan Q, Zhang X, Kong LQ, Fan J, Dai Z et al.. MiR-146a enhances angiogenic activity of endothelial cells in hepatocellular carcinoma by promoting PDGFRA expression. Carcinogenesis. 2013; 34:2071-9.
  • [33]Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S et al.. TGF-beta-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell. 2012; 22:291-303.
  • [34]Lu S, Gao Y, Huang X, Wang X. Cantharidin exerts anti-hepatocellular carcinoma by miR-214 modulating macrophage polarization. Int J Biol Sci. 2014; 10:415-25.
  • [35]Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, Benes V et al.. Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth. Cancer Res. 2009; 69:8332-40.
  • [36]Zhang B, Liu XX, He JR, Zhou CX, Guo M, He M et al.. Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis. 2011; 32:2-9.
  • [37]Yu T, Wang XY, Gong RG, Li A, Yang S, Cao YT et al.. The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. J Exp Clin Cancer Res. 2009; 28:64. BioMed Central Full Text
  • [38]Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A et al.. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene. 2007; 26:7590-5.
  • [39]Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH et al.. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 2009; 23:1327-37.
  • [40]Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci U S A. 2010; 107:2183-8.
  • [41]Zhang J, Han C, Wu T. MicroRNA-26a promotes cholangiocarcinoma growth by activating beta-catenin. Gastroenterology. 2012; 143:246-56.
  • [42]Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S et al.. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009; 361:1437-47.
  • [43]Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z et al.. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol. 2011; 29:4781-8.
  • [44]Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al.. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009; 137:1005-17.
  • [45]Zhu Y, Lu Y, Zhang Q, Liu JJ, Li TJ, Yang JR et al.. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res. 2012; 40:4615-25.
  • [46]Chen L, Zheng J, Zhang Y, Yang L, Wang J, Ni J et al.. Tumor-specific expression of microRNA-26a suppresses human hepatocellular carcinoma growth via cyclin-dependent and -independent pathways. Mol Ther. 2011; 19:1521-8.
  • [47]Yang X, Zhang XF, Lu X, Jia HL, Liang L, Dong QZ et al.. MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth factor-cMet pathway. Hepatology. 2014; 59:1874-85.
  • [48]Yang X, Liang L, Zhang XF, Jia HL, Qin Y, Zhu XC et al.. MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology. 2013; 58:158-70.
  • [49]Mandal CC, Ghosh-Choudhury T, Dey N, Choudhury GG, Ghosh-Choudhury N. miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis. 2012; 33:1897-908.
  • [50]Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003; 3:23-35.
  • [51]Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A et al.. The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int. 2013; 2013:187204.
  • [52]Su B, Zhao W, Shi B, Zhang Z, Yu X, Xie F et al.. Let-7d suppresses growth, metastasis, and tumor macrophage infiltration in renal cell carcinoma by targeting COL3A1 and CCL7. Mol Cancer. 2014; 13:206. BioMed Central Full Text
  • [53]Xu R, Bi C, Song J, Wang L, Ge C, Liu X, Zhang M. Upregulation of miR-142-5p in atherosclerotic plaques and regulation of oxidized low-density lipoprotein-induced apoptosis in macrophages. Mol Med Rep. 2015; 11:3229-3234.
  • [54]He M, Xu Z, Ding T, Kuang DM, Zheng L. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell Mol Immunol. 2009; 6:343-52.
  • [55]Hamilton JA, Achuthan A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol. 2013; 34:81-9.
  • [56]Scholl SM, Pallud C, Beuvon F, Hacene K, Stanley ER, Rohrschneider L et al.. Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst. 1994; 86:120-6.
  • [57]Kawamura K, Komohara Y, Takaishi K, Katabuchi H, Takeya M. Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol Int. 2009; 59:300-5.
  • [58]Espinosa I, Catasus L, DA E, Mozos A, Pedrola N, Bertolo C et al.. Stromal signatures in endometrioid endometrial carcinomas. Mod Pathol. 2014; 27:631-9.
  • [59]Behnes CL, Bremmer F, Hemmerlein B, Strauss A, Strobel P, Radzun HJ. Tumor-associated macrophages are involved in tumor progression in papillary renal cell carcinoma. Virchows Arch. 2014; 464:191-6.
  • [60]Cimino D, De Pitta C, Orso F, Zampini M, Casara S, Penna E et al.. miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB J. 2013; 27:1223-35.
  • [61]Wang YW, Shi DB, Chen X, Gao C, Gao P. Clinicopathological significance of microRNA-214 in gastric cancer and its effect on cell biological behaviour. PLoS One. 2014; 9:e91307.
  • [62]Zhang T, Yu J, Zhang Y, Li L, Chen Y, Li D et al.. Salmonella enterica serovar enteritidis modulates intestinal epithelial miR-128 levels to decrease macrophage recruitment via macrophage colony-stimulating factor. J Infect Dis. 2014; 209:2000-11.
  • [63]Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol. 2007; 178:5245-52.
  • [64]Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol. 2009; 86:411-21.
  • [65]Laoui D, Van Overmeire E, De Baetselier P, Van Ginderachter JA, Raes G. Functional relationship between tumor-associated macrophages and macrophage colony-stimulating factor as contributors to cancer progression. Front Immunol. 2014; 5:489.
  • [66]Cheng H, Clarkson PW, Gao D, Pacheco M, Wang Y, Nielsen TO. Therapeutic antibodies targeting CSF1 impede macrophage recruitment in a xenograft model of tenosynovial giant cell tumor. Sarcoma. 2010; 2010:174528.
  • [67]Katamura Y, Aikata H, Hashimoto Y, Kimura Y, Kawaoka T, Takaki S et al.. Zoledronic acid delays disease progression of bone metastases from hepatocellular carcinoma. Hepatol Res. 2010; 40:1195-203.
  • [68]Liu Q, Tao YH, Bai RZ, Chang SJ, Hua D. Zoledronic acid inhibits growth of hepatocellular carcinoma cells in vitro and in vivo. Chin Med J (Engl). 2013; 126:1486-90.
  • [69]Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX et al.. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res. 2010; 16:3420-30.
  文献评价指标  
  下载次数:22次 浏览次数:12次