期刊论文详细信息
Journal of Animal Science and Biotechnology
Study and use of the probiotic Lactobacillus reuteri in pigs: a review
Shiyan Qiao1  Hong Liu1  Fengjuan Yang1  Xiangfang Zeng1  Chengli Hou1 
[1] State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
关键词: Probiotics;    Pigs;    Lactobacillus reuteri;    Application;    Antibiotics;   
Others  :  1179000
DOI  :  10.1186/s40104-015-0014-3
 received in 2014-10-26, accepted in 2015-03-26,  发布年份 2015
PDF
【 摘 要 】

Probiotics are living microorganisms that provide a wide variety of health benefits to the host when ingested in adequate amounts. The bacterial strains most frequently used as probiotic agents are lactic acid bacteria, such as Lactobacillus reuteri, which is one of the few endogenous Lactobacillus species found in the gastrointestinal tract of vertebrates, including humans, rats, pigs and chickens. L. reuteri is one of the most well documented probiotic species and has been widely utilized as a probiotic in humans and animals for many years. Initially, L. reuteri was used in humans to reduce the incidence and the severity of diarrhea, prevent colic and necrotic enterocolitis, and maintain a functional mucosal barrier. As interest in alternatives to in-feed antibiotics has grown in recent years, some evidence has emerged that probiotics may promote growth, improve the efficiency of feed utilization, prevent diarrhea, and regulate the immune system in pigs. In this review, the characteristics of L. reuteri are described, in order to update the evidence on the efficacy of using L. reuteri in pigs.

【 授权许可】

   
2015 Hou et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150507091926983.pdf 682KB PDF download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Thacker PA: Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechnol 2013, 4:35. BioMed Central Full Text
  • [2]Wang Z, Zeng X, Mo Y, Smith K, Guo Y, Lin J: Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl Environ Microbiol 2012, 78:8795-802.
  • [3]Guarner F, Schaafsma GJ: Probiotics. Int J Food Microbiol 1998, 39:237-8.
  • [4]Gaggia F, Mattarelli P, Biavati B: Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 2010, 141(Suppl 1):S15-28.
  • [5]Cho JH, Zhao PY, Kim IH: Probiotics as a dietary additive for pigs: a review. J Anim Vet Adv 2011, 10:2127-34.
  • [6]Kailasapathy K, Chin J: Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol 2000, 78:80-8.
  • [7]Tuomola E, Crittenden R, Playne M, Isolauri E, Salminen S: Quality assurance criteria for probiotic bacteria. Am J Clin Nutr 2001, 73:393S-8.
  • [8]Shokryazdan P, Sieo CC, Kalavathy R, Liang JB, Alitheen NB, Jahromi MF, et al.: Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. Biomed Res Int 2014, 2014:927268.
  • [9]Land MH, Rouster-Stevens K, Woods CR, Cannon ML, Cnota J, Shetty AK: Lactobacillus sepsis associated with probiotic therapy. Pediatrics 2005, 115:178-81.
  • [10]Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Ng J, Munro K, Alatossava T: Identification of Lactobacillus isolates from the gastrointestinal tract, silage, and yoghurt by 16S-23S rRNA gene intergenic spacer region sequence comparisons. Appl Environ Microbiol 1999, 65:4264-7.
  • [11]Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN, Roos S, et al.: Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J 2010, 4:377-87.
  • [12]Chang YH, Kim JK, Kim HJ, Kim WY, Kim YB, Park YH: Selection of a potential probiotic Lactobacillus strain and subsequent in vivo studies. Antonie Van Leeuwenhoek 2001, 80:193-9.
  • [13]Coccorullo P, Strisciuglio C, Martinelli M, Miele E, Greco L, Staiano A: Lactobacillus reuteri (DSM 17938) in infants with functional chronic constipation: a double-blind, randomized, placebo-controlled study. J Pediatr 2010, 157:598-602.
  • [14]Francavilla R, Lionetti E, Castellaneta S, Ciruzzi F, Indrio F, Masciale A, et al.: Randomised clinical trial: Lactobacillus reuteri DSM 17938 vs. placebo in children with acute diarrhoea-a double-blind study. Aliment Pharmacol Ther 2012, 36:363-9.
  • [15]Hou C, Wang Q, Zeng X, Yang F, Zhang J, Liu H, et al.: Complete genome sequence of Lactobacillus reuteri I5007, a probiotic strain isolated from healthy piglet. J Biotechnol 2014, 179:63-4.
  • [16]Huang CH, Qiao SY, Li DF, Piao XS, Ren JP: Effects of Lactobacillus on the performance, diarrhea incidence, VFA concentration and gastrointestinal microbial flora of weaning pigs. Asian-Aust J Anim Sci. 2004, 17:401-9.
  • [17]Yu B, Liu JR, Chiou MY, Hsu YR, Chiou PWS: The effects of probiotic Lactobacillus reuteri Pg4 strain on intestinal characteristics and performance in broilers. Asian-Aust J Anim Sci. 2007, 20:1243-51.
  • [18]Whitehead K, Versalovic J, Roos S, Britton RA: Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol. 2008, 74:1812-9.
  • [19]Seo BJ, Mun MR, Rejish Kumar J, Kim CJ, Lee I, Chang YH, et al.: Bile tolerant Lactobacillus reuteri isolated from pig feces inhibits enteric bacterial pathogens and porcine rotavirus. Vet Res Commun. 2010, 34:323-33.
  • [20]Lebeer S, Vanderleyden J, De Keersmaecker SC: Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008, 72:728-64.
  • [21]Li XJ, Yue LY, Guan XF, Qiao SY: The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J Appl Microbiol. 2008, 104:1082-91.
  • [22]Wang B, Wei H, Yuan J, Li Q, Li Y, Li N, et al.: Identification of a surface protein from Lactobacillus reuteri JCM1081 that adheres to porcine gastric mucin and human enterocyte-like HT-29 cells. Curr Microbiol. 2008, 57:33-8.
  • [23]Miyoshi Y, Okada S, Uchimura T, Satoh E: A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci Biotechnol Biochem. 2006, 70:1622-8.
  • [24]Mackenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ, Roos S, et al.: Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiology. 2010, 156:3368-78.
  • [25]Walter J, Loach DM, Alqumber M, Rockel C, Hermann C, Pfitzenmaier M, et al.: D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100–23 results in impaired colonization of the mouse gastrointestinal tract. Environ Microbiol. 2007, 9:1750-60.
  • [26]Wang Y, Gänzle MG, Schwab C: Exopolysaccharide synthesized by Lactobacillus reuteri decreases the ability of enterotoxigenic Escherichia coli to bind to porcine erythrocytes. Appl Environ Microbiol. 2010, 76:4863-6.
  • [27]Walter J, Schwab C, Loach DM, Ganzle MG, Tannock GW: Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology. 2008, 154:72-80.
  • [28]Martinez RC, Seney SL, Summers KL, Nomizo A, De Martinis EC, Reid G: Effect of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on the ability of Candida albicans to infect cells and induce inflammation. Microbiol Immunol. 2009, 53:487-95.
  • [29]Bian L. An in vitro antimicrobial and safety study of Lactobacillus reuteri DPC16 for validation of probiotic concept. Master thesis: Massey University; 2008.
  • [30]Amin HM, Hashem AM, Ashour MS, Hatti-Kaul R: 1,2 Propanediol utilization by Lactobacillus reuteri DSM 20016, role in bioconversion of glycerol to 1,3 propanediol, 3-hydroxypropionaldehyde and 3-hydroxypropionic acid. J Genet Eng Biotechnol. 2013, 11:53-9.
  • [31]Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, et al.: Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 2008, 15:151-61.
  • [32]Gänzle MG, Höltzel A, Walter J, Jung G, Hammes WP: Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol. 2000, 66:4325-33.
  • [33]Mukai T, Asasaka T, Sato E, Mori K, Matsumoto M, Ohori H: Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunol Med Microbiol. 2002, 32:105-10.
  • [34]Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F: Lactobacillus reuteri CRL1098 produces cobalamin. J Bacteriol. 2003, 185:5643-7.
  • [35]Wang AN, Yi XW, Yu HF, Dong B, Qiao SY: Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing-finishing pigs. J Appl Microbiol. 2009, 107:1140-8.
  • [36]Hoffmann M, Rath E, Holzlwimmer G, Quintanilla-Martinez L, Loach D, Tannock G, et al.: Lactobacillus reuteri 100–23 transiently activates intestinal epithelial cells of mice that have a complex microbiota during early stages of colonization. J Nutr. 2008, 138:1684-91.
  • [37]Atkins HL, Geier MS, Prisciandaro LD, Pattanaik AK, Forder RE, Turner MS, et al.: Effects of a Lactobacillus reuteri BR11 mutant deficient in the cystine-transport system in a rat model of inflammatory bowel disease. Dig Dis Sci. 2012, 57:713-9.
  • [38]Urbanska M, Szajewska H: The efficacy of Lactobacillus reuteri DSM 17938 in infants and children: a review of the current evidence. Eur J Pediatr. 2014, 173:1327-37.
  • [39]Dicksved J, Schreiber O, Willing B, Petersson J, Rang S, Phillipson M, et al.: Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction. PLoS One. 2012., 7Article ID e46399
  • [40]Lee DY, Seo YS, Rayamajhi N, Kang ML, Lee SI, Yoo HS: Isolation, characterization, and evaluation of wild isolates of Lactobacillus reuteri from pig feces. J Microbiol. 2009, 47:663-72.
  • [41]Heavens D, Tailford LE, Crossman L, Jeffers F, Mackenzie DA, Caccamo M, et al.: Genome sequence of the vertebrate gut symbiont Lactobacillus reuteri ATCC 53608. J Bacteriol. 2011, 193:4015-6.
  • [42]Rosander A, Connolly E, Roos S: Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl Environ Microbiol 2008, 74:6032-40.
  • [43]van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E: Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek. 2002, 82:187-216.
  • [44]Liu XT, Hou CL, Zhang J, Zeng XF, Qiao SY: Fermentation conditions influence the fatty acid composition of the membranes of Lactobacillus reuteri I5007 and its survival following freeze-drying. Lett Appl Microbiol. 2014, 59:398-403.
  • [45]Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, et al.: The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet. 2011., 7Article ID e1001314
  • [46]Liu H, Zhang J, Zhang S, Yang F, Thacker PA, Zhang G, et al.: Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem. 2014, 62:860-6.
  • [47]Wang A, Yu H, Gao X, Li X, Qiao S: Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets. Antonie Van Leeuwenhoek 2009, 96:89-98.
  • [48]Wang X, Yang F, Liu C, Zhou H, Wu G, Qiao S, et al.: Dietary supplementation with the probiotic Lactobacillus fermentum I5007 and the antibiotic aureomycin differentially affects the small intestinal proteomes of weanling piglets. J Nutr. 2012, 142:7-13.
  • [49]Hou CL, Zhang J, Liu XT, Liu H, Zeng XF, Qiao SY: Superoxide dismutase recombinant Lactobacillus fermentum ameliorates intestinal oxidative stress through inhibiting NF-kappaB activation in a trinitrobenzene sulphonic acid-induced colitis mouse model. J Appl Microbiol 2014, 116:1621-31.
  • [50]Wang AN, Cai CJ, Zeng XF, Zhang FR, Zhang GL, Thacker PA, et al.: Dietary supplementation with Lactobacillus fermentum I5007 improves the anti-oxidative activity of weanling piglets challenged with diquat. J Appl Microbiol. 2013, 114:1582-91.
  • [51]Wang SP, Yang LY, Tang XS, Cai LC, Liu G, Kong XF, et al.: Dietary supplementation with high-dose Bacillus subtilis or Lactobacillus reuteri modulates cellular and humoral immunities and improves performance in weaned piglets. J Food Agric Environ 2011, 9:181-7.
  • [52]Yu H, Wang A, Li X, Qiao S: Effect of viable Lactobacillus fermentum on the growth performance, nutrient digestibility and immunity of weaned pigs. J Anim Feed Sci. 2008, 17:61-9.
  • [53]Fairbrother JM, Nadeau E, Gyles CL: Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 2005, 6:17-39.
  • [54]Chen XY, Woodward A, Zijlstra RT, Ganzle MG: Exopolysaccharides synthesised by Lactobacillus reuteri protect against enterotoxigenic Escherichia coli in piglets. Appl Environ Microbiol 2014, 80:5752-60.
  • [55]Francis DH: Enterotoxigenic Escherichia coli infection in pigs and its diagnosis. J Swine Health Prod 2002, 10:171-5.
  • [56]Campbell JM, Crenshaw JD, Polo J: The biological stress of early weaned piglets. J Anim Sci Biotechnol 2013, 4:19. BioMed Central Full Text
  • [57]Jones SE, Versalovic J: Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 2009, 9:35. BioMed Central Full Text
  • [58]Azevedo MS, Zhang W, Wen K, Gonzalez AM, Saif LJ, Yousef AE, et al.: Lactobacillus acidophilus and Lactobacillus reuteri modulate cytokine responses in gnotobiotic pigs infected with human rotavirus. Benef Microbes 2012, 3:33-42.
  • [59]Walter J, Britton RA, Roos S: Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci U S A 2011, 108(Suppl 1):4645-52.
  • [60]Liu Y, Fatheree NY, Mangalat N, Rhoads JM: Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2010, 299:G1087-96.
  • [61]Jones ML, Martoni CJ, Ganopolsky JG, Sulemankhil I, Ghali P, Prakash S: Improvement of gastrointestinal health status in subjects consuming Lactobacillus reuteri NCIMB 30242 capsules: a post-hoc analysis of a randomized controlled trial. Expert Opin Biol Ther. 2013, 13:1643-51.
  • [62]Jones ML, Martoni CJ, Prakash S: Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr. 2012, 66:1234-41.
  • [63]Jones ML, Martoni CJ, Prakash S: Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J Clin Endocrinol Metab 2013, 98:2944-51.
  • [64]Dommels YE, Kemperman RA, Zebregs YE, Draaisma RB, Jol A, Wolvers DA, et al.: Survival of Lactobacillus reuteri DSM 17938 and Lactobacillus rhamnosus GG in the human gastrointestinal tract with daily consumption of a low-fat probiotic spread. Appl Environ Microbiol. 2009, 75:6198-204.
  • [65]Liu Y, Fatheree NY, Dingle BM, Tran DQ, Rhoads JM: Lactobacillus reuteri DSM 17938 changes the frequency of Foxp3+ regulatory T cells in the intestine and mesenteric lymph node in experimental necrotizing enterocolitis. PLoS One. 2013., 8Article ID e56547
  • [66]Fåk F, Bäckhed F: Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe−/− mice. PLoS One. 2012., 7Article ID e46837
  • [67]Eaton KA, Honkala A, Auchtung TA, Britton RA: Probiotic Lactobacillus reuteri ameliorates disease due to enterohemorrhagic Escherichia coli in germfree mice. Infect Immun. 2011, 79:185-91.
  • [68]Iniesta M, Herrera D, Montero E, Zurbriggen M, Matos AR, Marin MJ, et al.: Probiotic effects of orally administered Lactobacillus reuteri-containing tablets on the subgingival and salivary microbiota in patients with gingivitis. a randomized clinical trial. J Clin Periodontol 2012, 39:736-44.
  • [69]Keller MK, Bardow A, Jensdottir T, Lykkeaa J, Twetman S: Effect of chewing gums containing the probiotic bacterium Lactobacillus reuteri on oral malodour. Acta Odontol Scand. 2012, 70:246-50.
  • [70]Kohler GA, Assefa S, Reid G: Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect Dis Obstet Gynecol. 2012, 2012:636474.
  • [71]Lin CH, Lin CC, Shibu MA, Liu CS, Kuo CH, Tsai FJ, et al.: Oral Lactobacillus reuteri GMN-32 treatment reduces blood glucose concentrations and promotes cardiac function in rats with streptozotocin-induced diabetes mellitus. Br J Nutr. 2014, 111:598-605.
  • [72]Mehling H, Busjahn A: Non-viable Lactobacillus reuteri DSMZ 17648 (Pylopass) as a new approach to Helicobacter pylori control in humans. Nutrients. 2013, 5:3062-73.
  • [73]Hsieh FC, Lee CL, Chai CY, Chen WT, Lu YC, Wu CS. Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metab (Lond). 2013;10:35.
  • [74]Lu YC, Yin LT, Chang WT, Huang JS: Effect of Lactobacillus reuteri GMNL-263 treatment on renal fibrosis in diabetic rats. J Biosci Bioeng. 2010, 110:709-15.
  • [75]Guo J, Mauch A, Galle S, Murphy P, Arendt EK, Coffey A: Inhibition of growth of Trichophyton tonsurans by Lactobacillus reuteri. J Appl Microbiol. 2011, 111:474-83.
  • [76]Valladares R, Sankar D, Li N, Williams E, Lai KK, Abdelgeliel AS, et al.: Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats. PLoS One. 2010., 5Article ID e10507
  • [77]Livingston M, Loach D, Wilson M, Tannock GW, Baird M: Gut commensal Lactobacillus reuteri 100–23 stimulates an immunoregulatory response. Immunol Cell Biol. 2010, 88:99-102.
  • [78]Zhao PY, Kim IH: Effect of direct-fed microbial on growth performance, nutrient digestibility, fecal noxious gas emission, fecal microbial flora and diarrhea score in weanling pigs. Anim Feed Sci Technol 2015, 200:86-92.
  • [79]De Angelis M, Siragusa S, Caputo L, Ragni A, Burzigotti R, Gobbetti M: Survival and persistence of Lactobacillus plantarum 4.1 and Lactobacillus reuteri 3S7 in the gastrointestinal tract of pigs. Vet Microbiol 2007, 123:133-44.
  文献评价指标  
  下载次数:6次 浏览次数:5次