期刊论文详细信息
Breast Cancer Research
Pharmacologic reversion of epigenetic silencing of the PRKD1 promoter blocks breast tumor cell invasion and metastasis
Peter Storz1  Xochiquetzal J Geiger2  E Aubrey Thompson1  Panos Z Anastasiadis1  Zhifu Sun3  Cathy A Andorfer4  Edith A Perez4  Heike Döppler1  Sahra Borges1 
[1] Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, 32224, USA;Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA;Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA;Hematology/Oncology Department, Mayo Clinic, Jacksonville, FL 32224, USA
关键词: Protein kinase D1;    PKD1;    Metastasis;    Invasion;    Decitabine;   
Others  :  793899
DOI  :  10.1186/bcr3460
 received in 2013-01-14, accepted in 2013-06-10,  发布年份 2013
PDF
【 摘 要 】

Introduction

DNA methylation-induced silencing of genes encoding tumor suppressors is common in many types of cancer, but little is known about how such epigenetic silencing can contribute to tumor metastasis. The PRKD1 gene encodes protein kinase D1 (PKD1), a serine/threonine kinase that is expressed in cells of the normal mammary gland, where it maintains the epithelial phenotype by preventing epithelial-to-mesenchymal transition.

Methods

The status of PRKD1 promoter methylation was analyzed by reduced representation bisulfite deep sequencing, methylation-specific PCR (MSP-PCR) and in situ MSP-PCR in invasive and noninvasive breast cancer lines, as well as in humans in 34 cases of “normal” tissue, 22 cases of ductal carcinoma in situ, 22 cases of estrogen receptor positive, HER2-negative (ER+/HER2-) invasive lobular carcinoma, 43 cases of ER+/HER2- invasive ductal carcinoma (IDC), 93 cases of HER2+ IDC and 96 cases of triple-negative IDC. A reexpression strategy using the DNA methyltransferase inhibitor decitabine was used in vitro in MDA-MB-231 cells as well as in vivo in a tumor xenograft model and measured by RT-PCR, immunoblotting and immunohistochemistry. The effect of PKD1 reexpression on cell invasion was analyzed in vitro by transwell invasion assay. Tumor growth and metastasis were monitored in vivo using the IVIS Spectrum Pre-clinical In Vivo Imaging System.

Results

Herein we show that the gene promoter of PRKD1 is aberrantly methylated and silenced in its expression in invasive breast cancer cells and during breast tumor progression, increasing with the aggressiveness of tumors. Using an animal model, we show that reversion of PRKD1 promoter methylation with the DNA methyltransferase inhibitor decitabine restores PKD1 expression and blocks tumor spread and metastasis to the lung in a PKD1-dependent fashion.

Conclusions

Our data suggest that the status of epigenetic regulation of the PRKD1 promoter can provide valid information on the invasiveness of breast tumors and therefore could serve as an early diagnostic marker. Moreover, targeted upregulation of PKD1 expression may be used as a therapeutic approach to reverse the invasive phenotype of breast cancer cells.

【 授权许可】

   
2013 Borges et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705060555181.pdf 1656KB PDF download
Figure 6. 65KB Image download
Figure 5. 77KB Image download
Figure 4. 52KB Image download
Figure 3. 35KB Image download
Figure 2. 60KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61:69-90.
  • [2]Bastea LI, Döppler H, Balogun B, Storz P: Protein kinase D1 maintains the epithelial phenotype by inducing a DNA-bound, inactive SNAI1 transcriptional repressor complex. PLoS One 2012, 7:e30459.
  • [3]Micalizzi DS, Christensen KL, Jedlicka P, Coletta RD, Barón AE, Harrell JC, Horwitz KB, Billheimer D, Heichman KA, Welm AL, Schiemann WP, Ford HL: The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-β signaling. J Clin Invest 2009, 119:2678-2690.
  • [4]Micalizzi DS, Farabaugh SM, Ford HL: Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 2010, 15:117-134.
  • [5]Zhang H, Meng F, Liu G, Zhang B, Zhu J, Wu F, Ethier SP, Miller F, Wu G: Forkhead transcription factor Foxq1 promotes epithelial–mesenchymal transition and breast cancer metastasis. Cancer Res 2011, 71:1292-1301.
  • [6]Eiseler T, Döppler H, Yan IK, Kitatani K, Mizuno K, Storz P: Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nat Cell Biol 2009, 11:545-556.
  • [7]Eiseler T, Hausser A, De Kimpe L, Van Lint J, Pfizenmaier K: Protein kinase D controls actin polymerization and cell motility through phosphorylation of cortactin. J Biol Chem 2010, 285:18672-18683.
  • [8]Eiseler T, Schmid MA, Topbas F, Pfizenmaier K, Hausser A: PKD is recruited to sites of actin remodelling at the leading edge and negatively regulates cell migration. FEBS Lett 2007, 581:4279-4287.
  • [9]Peterburs P, Heering J, Link G, Pfizenmaier K, Olayioye MA, Hausser A: Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like. Cancer Res 2009, 69:5634-5638.
  • [10]Pusapati GV, Eiseler T, Rykx A, Vandoninck S, Derua R, Waelkens E, Van Lint J, von Wichert G, Seufferlein T: Protein kinase D regulates RhoA activity via rhotekin phosphorylation. J Biol Chem 2012, 287:9473-9483.
  • [11]Spratley SJ, Bastea LI, Döppler H, Mizuno K, Storz P: Protein kinase D regulates cofilin activity through p21-activated kinase 4. J Biol Chem 2011, 286:34254-34261.
  • [12]Eiseler T, Döppler H, Yan IK, Goodison S, Storz P: Protein kinase D1 regulates matrix metalloproteinase expression and inhibits breast cancer cell invasion. Breast Cancer Res 2009, 11:R13. BioMed Central Full Text
  • [13]Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, MacGrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R: Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 2005, 24:4660-4671.
  • [14]Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature 2000, 406:747-752.
  • [15]van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347:1999-2009.
  • [16]van ’t Veer LJ, Bernards R: Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 2008, 452:564-570.
  • [17]Baylin SB, Ohm JE: Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006, 6:107-116.
  • [18]Jovanovic J, Rønneberg JA, Tost J, Kristensen V: The epigenetics of breast cancer. Mol Oncol 2010, 4:242-254.
  • [19]Jauliac S, López-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A: The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 2002, 4:540-544.
  • [20]Asmann YW, Hossain A, Necela BM, Middha S, Kalari KR, Sun Z, Chai HS, Williamson DW, Radisky D, Schroth GP, Kocher JPA, Perez EA, Thompson EA: A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines. Nucleic Acids Res 2011, 39:e100.
  • [21]Sun Z, Asmann YW, Kalari KR, Bot B, Eckel-Passow JE, Baker TR, Carr JM, Khrebtukova I, Luo S, Zhang L, Schroth GP, Perez EA, Thompson EA: Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing. PLoS One 2011, 6:e17490.
  • [22]Nuovo GJ, Plaia TW, Belinsky SA, Baylin SB, Herman JG: In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc Natl Acad Sci U S A 1999, 96:12754-12759.
  • [23]Du C, Zhang C, Hassan S, Biswas MH, Balaji KC: Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res 2010, 70:7810-7819.
  • [24]Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, et al.: The landscape of cancer genes and mutational processes in breast cancer. Nature 2012, 486:400-404.
  • [25]Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE: The consensus coding sequences of human breast and colorectal cancers. Science 2006, 314:268-274.
  • [26]Hao Q, McKenzie R, Gan H, Tang H: Protein kinases D2 and D3 are novel growth regulators in HCC1806 triple-negative breast cancer cells. Anticancer Res 2013, 33:393-399.
  • [27]Skliris GP, Munot K, Bell SM, Carder PJ, Lane S, Horgan K, Lansdown MR, Parkes AT, Hanby AM, Markham AF, Speirs V: Reduced expression of oestrogen receptor β in invasive breast cancer and its re-expression using DNA methyl transferase inhibitors in a cell line model. J Pathol 2003, 201:213-220.
  • [28]Chabottaux V, Noel A: Breast cancer progression: insights into multifaceted matrix metalloproteinases. Clin Exp Metastasis 2007, 24:647-656.
  • [29]Egeblad M, Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002, 2:161-174.
  • [30]McCaffrey LM, Montalbano J, Mihai C, Macara IG: Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell 2012, 22:601-614.
  • [31]Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massagué J: Genes that mediate breast cancer metastasis to lung. Nature 2005, 436:518-524.
  • [32]Singh B, Berry JA, Shoher A, Ayers GD, Wei C, Lucci A: COX-2 involvement in breast cancer metastasis to bone. Oncogene 2007, 26:3789-3796.
  • [33]Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massagué J: Genes that mediate breast cancer metastasis to the brain. Nature 2009, 459:1005-1009.
  • [34]Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massagué J: Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005, 115:44-55.
  • [35]Rozengurt E: Protein kinase D signaling: multiple biological functions in health and disease. Physiology (Bethesda) 2011, 26:23-33.
  • [36]Eiseler T, Köhler C, Nimmagadda SC, Jamali A, Funk N, Joodi G, Storz P, Seufferlein T: Protein kinase D1 mediates anchorage-dependent and -independent growth of tumor cells via the zinc finger transcription factor Snail1. J Biol Chem 2012, 287:32367-32380.
  • [37]Jaggi M, Rao PS, Smith DJ, Hemstreet GP, Balaji KC: Protein kinase C μ is down-regulated in androgen-independent prostate cancer. Biochem Biophys Res Commun 2003, 307:254-260.
  • [38]De Kimpe L, Janssens K, Derua R, Armacki M, Goicoechea S, Otey C, Waelkens E, Vandoninck S, Vandenheede JR, Seufferlein T, Van Lint J: Characterization of cortactin as an in vivo protein kinase D substrate: interdependence of sites and potentiation by Src. Cell Signal 2009, 21:253-263.
  • [39]Kim M, Jang HR, Kim JH, Noh SM, Song KS, Cho JS, Jeong HY, Norman JC, Caswell PT, Kang GH, Kim SY, Yoo HS, Kim YS: Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis 2008, 29:629-637.
  • [40]Onishi Y, Kawamoto T, Kishimoto K, Hara H, Fukase N, Toda M, Harada R, Kurosaka M, Akisue T: PKD1 negatively regulates cell invasion, migration and proliferation ability of human osteosarcoma. Int J Oncol 2012, 40:1839-1848.
  • [41]Baylin SB, Jones PA: A decade of exploring the cancer epigenome: biological and translational implications. Nat Rev Cancer 2011, 11:726-734.
  • [42]Beaudet AL, Jiang YH: A rheostat model for a rapid and reversible form of imprinting-dependent evolution. Am J Hum Genet 2002, 70:1389-1397.
  • [43]Lehmann U, Celikkaya G, Hasemeier B, Länger F, Kreipe H: Promoter hypermethylation of the death-associated protein kinase gene in breast cancer is associated with the invasive lobular subtype. Cancer Res 2002, 62:6634-6638.
  • [44]Fackler MJ, McVeigh M, Evron E, Garrett E, Mehrotra J, Polyak K, Sukumar S, Argani P: DNA methylation of RASSF1A, HIN-1, RAR-β, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma. Int J Cancer 2003, 107:970-975.
  • [45]Zhu WG, Hileman T, Ke Y, Wang P, Lu S, Duan W, Dai Z, Tong T, Villalona-Calero MA, Plass C, Otterson GA: 5-aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 2004, 279:15161-15166.
  • [46]Bender CM, Pao MM, Jones PA: Inhibition of DNA methylation by 5-aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 1998, 58:95-101.
  • [47]Herman JG, Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003, 349:2042-2054.
  • [48]Shin DY, Park YS, Yang K, Kim GY, Kim WJ, Han MH, Kang HS, Choi YH: Decitabine, a DNA methyltransferase inhibitor, induces apoptosis in human leukemia cells through intracellular reactive oxygen species generation. Int J Oncol 2012, 41:910-918.
  • [49]Jones PA, Taylor SM: Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980, 20:85-93.
  • [50]Liang G, Gonzales FA, Jones PA, Orntoft TF, Thykjaer T: Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2′-deoxycytidine. Cancer Res 2002, 62:961-966.
  • [51]Wolf SF, Migeon BR: Studies of X chromosome DNA methylation in normal human cells. Nature 1982, 295:667-671.
  • [52]Yang AS, Estecio MRH, Garcia-Manero G, Kantarjian HM, Issa JPJ: Comment on “Chromosomal instability and tumors promoted by DNA hypomethylation” and “Induction of tumors in nice by genomic hypomethylation. Science 2003, 302:1153.
  文献评价指标  
  下载次数:0次 浏览次数:4次