| Cell Division | |
| Differential requirement of cyclin-dependent kinase 2 for oligodendrocyte progenitor cell proliferation and differentiation | |
| Anne Baron-Van Evercooren2  Céline Caillava1  | |
| [1] Cnrs, UMR 7225, Paris, France;AP-HP Hôpital Pitié-Salpêtrière, Fédération de Neurologie, Paris, France | |
| 关键词: Adult neural stem cell; Oligodendrocyte progenitor; Remyelination; Proliferation; Cdk2; | |
| Others : 791247 DOI : 10.1186/1747-1028-7-14 |
|
| received in 2011-10-07, accepted in 2012-04-18, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Cyclin-dependent kinases (Cdks) and their cyclin regulatory subunits control cell growth and division. Cdk2-cyclin E complexes, phosphorylating the retinoblastoma protein, drive cells through the G1/S transition into the S phase of the cell cycle. Despite its fundamental role, Cdk2 was found to be indispensable only in specific cell types due to molecular redundancies in its function. Converging studies highlight involvement of Cdk2 and associated cell cycle regulatory proteins in oligodendrocyte progenitor cell proliferation and differentiation. Giving the contribution of this immature cell type to brain plasticity and repair in the adult, this review will explore the requirement of Cdk2 for oligodendrogenesis, oligodendrocyte progenitor cells proliferation and differentiation during physiological and pathological conditions.
【 授权许可】
2012 Caillava and Baron-Van Evercooren; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140705011718978.pdf | 596KB | ||
| Figure 2 . | 57KB | Image | |
| Figure 1 . | 64KB | Image |
【 图 表 】
Figure 1 .
Figure 2 .
【 参考文献 】
- [1]Temple S, Raff MC: Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions. Cell 1986, 44:773-779.
- [2]Ffrench-Constant C, Raff MC: Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature 1986, 319:499-502.
- [3]Reynolds R, Hardy R: Oligodendroglial progenitors labeled with the O4 antibody persist in the adult rat cerebral cortex in vivo. J Neurosci Res 1997, 47:455-470.
- [4]Wolswijk G, Noble M: Identification of an adult-specific glial progenitor cell. Development 1989, 105:387-400.
- [5]Nguyen L, Borgs L, Vandenbosch R, Mangin JM, Beukelaers P, Moonen G, Gallo V, Malgrange B, Belachew S: The Yin and Yang of cell cycle progression and differentiation in the oligodendroglial lineage. Ment Retard Dev Disabil Res Rev 2006, 12:85-96.
- [6]Aguirre A, Gallo V: Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J Neurosci 2004, 24:10530-10541.
- [7]Belachew S, Chittajallu R, Aguirre AA, Yuan X, Kirby M, Anderson S, Gallo V: Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 2003, 161:169-186.
- [8]Engel U, Wolswijk G: Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord: in vitro characteristics and response to PDGF, bFGF and NT-3. Glia 1996, 16:16-26.
- [9]Kondo T, Raff M: Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 2000, 289:1754-1757.
- [10]Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD: PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 2008, 11:1392-1401.
- [11]Yoo S, Wrathall JR: Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors. Dev Neurobiol 2007, 67:860-874.
- [12]Barres BA, Lazar MA, Raff MC: A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 1994, 120:1097-1108.
- [13]Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD: NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 2000, 20:6404-6412.
- [14]Franklin RJ: Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 2002, 3:705-714.
- [15]Gensert JM, Goldman JE: Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 1997, 19:197-203.
- [16]Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999, 97:703-716.
- [17]Levison SW, Goldman JE: Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 1993, 10:201-212.
- [18]Nait-Oumesmar B, Decker L, Lachapelle F, Avellana-Adalid V, Bachelin C, Van Evercooren AB: Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci 1999, 11:4357-4366.
- [19]Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Evercooren AB: Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci U S A 2002, 99:13211-13216.
- [20]Nait-Oumesmar B, Picard-Riera N, Kerninon C, Decker L, Seilhean D, Hoglinger GU, Hirsch EC, Reynolds R, Baron-Van Evercooren A: Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci U S A 2007, 104:4694-4699.
- [21]Decker L, Picard-Riera N, Lachapelle F, Baron-Van Evercooren A: Growth factor treatment promotes mobilization of young but not aged adult subventricular zone precursors in response to demyelination. J Neurosci Res 2002, 69:763-771.
- [22]Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A: Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 2006, 26:7907-7918.
- [23]Aguirre A, Dupree JL, Mangin JM, Gallo V: A functional role for EGFR signaling in myelination and remyelination. Nat Neurosci 2007, 10:990-1002.
- [24]Morgan DO: Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997, 13:261-291.
- [25]Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999, 13:1501-1512.
- [26]Bagui TK, Mohapatra S, Haura E, Pledger WJ: P27Kip1 and p21Cip1 are not required for the formation of active D cyclin-cdk4 complexes. Mol Cell Biol 2003, 23:7285-7290.
- [27]Sugimoto M, Martin N, Wilks DP, Tamai K, Huot TJ, Pantoja C, Okumura K, Serrano M, Hara E: Activation of cyclin D1-kinase in murine fibroblasts lacking both p21(Cip1) and p27(Kip1). Oncogene 2002, 21:8067-8074.
- [28]Coqueret O: New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 2003, 13:65-70.
- [29]Belachew S, Aguirre AA, Wang H, Vautier F, Yuan X, Anderson S, Kirby M, Gallo V: Cyclin-dependent kinase-2 controls oligodendrocyte progenitor cell cycle progression and is downregulated in adult oligodendrocyte progenitors. J Neurosci 2002, 22:8553-8562.
- [30]Caillava C, Vandenbosch R, Jablonska B, Deboux C, Spigoni G, Gallo V, Malgrange B, Baron-Van Evercooren A: Cdk2 loss accelerates precursor differentiation and remyelination in the adult central nervous system. J Cell Biol 2011, 193:397-407.
- [31]Casaccia-Bonnefil P, Hardy RJ, Teng KK, Levine JM, Koff A, Chao MV: Loss of p27Kip1 function results in increased proliferative capacity of oligodendrocyte progenitors but unaltered timing of differentiation. Development 1999, 126:4027-4037.
- [32]Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich V, Chao MV, Koff A: Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev 1997, 11:2335-2346.
- [33]Ghiani C, Gallo V: Inhibition of cyclin E-cyclin-dependent kinase 2 complex formation and activity is associated with cell cycle arrest and withdrawal in oligodendrocyte progenitor cells. J Neurosci 2001, 21:1274-1282.
- [34]Ghiani CA, Eisen AM, Yuan X, DePinho RA, McBain CJ, Gallo V: Neurotransmitter receptor activation triggers p27(Kip1) and p21(CIP1) accumulation and G1 cell cycle arrest in oligodendrocyte progenitors. Development 1999, 126:1077-1090.
- [35]Raff MC, Lillien LE, Richardson WD, Burne JF, Noble MD: Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 1988, 333:562-565.
- [36]Tikoo R, Osterhout DJ, Casaccia-Bonnefil P, Seth P, Koff A, Chao MV: Ectopic expression of p27Kip1 in oligodendrocyte progenitor cells results in cell-cycle growth arrest. J Neurobiol 1998, 36:431-440.
- [37]Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P: Cdk2 knockout mice are viable. Curr Biol 2003, 13:1775-1785.
- [38]Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M: Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 2003, 35:25-31.
- [39]Jablonska B, Aguirre A, Vandenbosch R, Belachew S, Berthet C, Kaldis P, Gallo V: Cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone. J Cell Biol 2007, 179:1231-1245.
- [40]Tetsu O, McCormick F: Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 2003, 3:233-245.
- [41]Satyanarayana A, Kaldis P: Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 2009, 28:2925-2939.
- [42]Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S, Dubus P, Barbacid M: Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 2004, 118:493-504.
- [43]Aleem E, Kiyokawa H, Kaldis P: Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol 2005, 7:831-836.
- [44]Satyanarayana A, Berthet C, Lopez-Molina J, Coppola V, Tessarollo L, Kaldis P: Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2. Development 2008, 135:3389-3400.
- [45]Vandenbosch R, Borgs L, Beukelaers P, Foidart A, Nguyen L, Moonen G, Berthet C, Kaldis P, Gallo V, Belachew S, Malgrange B: CDK2 is dispensable for adult hippocampal neurogenesis. Cell Cycle 2007, 6:3065-3069.
- [46]Raff MC, Abney ER, Fok-Seang J: Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation. Cell 1985, 42:61-69.
- [47]Tokumoto YM, Apperly JA, Gao FB, Raff MC: Posttranscriptional regulation of p18 and p27 Cdk inhibitor proteins and the timing of oligodendrocyte differentiation. Dev Biol 2002, 245:224-234.
- [48]Giaccia AJ, Kastan MB: The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 1998, 12:2973-2983.
- [49]Eizenberg O, Faber-Elman A, Gottlieb E, Oren M, Rotter V, Schwartz M: p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol Cell Biol 1996, 16:5178-5185.
- [50]Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995, 9:1149-1163.
- [51]Durand B, Fero ML, Roberts JM, Raff MC: p27Kip1 alters the response of cells to mitogen and is part of a cell-intrinsic timer that arrests the cell cycle and initiates differentiation. Curr Biol 1998, 8:431-440.
- [52]Durand B, Gao FB, Raff M: Accumulation of the cyclin-dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation. EMBO J 1997, 16:306-317.
- [53]Ghiani CA, Yuan X, Eisen AM, Knutson PL, DePinho RA, McBain CJ, Gallo V: Voltage-activated K + channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells. J Neurosci 1999, 19:5380-5392.
- [54]Tang XM, Strocchi P, Cambi F: Changes in the activity of cdk2 and cdk5 accompany differentiation of rat primary oligodendrocytes. J Cell Biochem 1998, 68:128-137.
- [55]Tikoo R, Casaccia-Bonnefil P, Chao MV, Koff A: Changes in cyclin-dependent kinase 2 and p27kip1 accompany glial cell differentiation of central glia-4 cells. J Biol Chem 1997, 272:442-447.
- [56]Tang XM, Beesley JS, Grinspan JB, Seth P, Kamholz J, Cambi F: Cell cycle arrest induced by ectopic expression of p27 is not sufficient to promote oligodendrocyte differentiation. J Cell Biochem 1999, 76:270-279.
- [57]Noble M: Precursor cell transitions in oligodendrocyte development. J Cell Biol 2000, 148:839-842.
- [58]Belachew S, Yuan X, Gallo V: Unraveling oligodendrocyte origin and function by cell-specific transgenesis. Dev Neurosci 2001, 23:287-298.
- [59]Yuan X, Chittajallu R, Belachew S, Anderson S, McBain CJ, Gallo V: Expression of the green fluorescent protein in the oligodendrocyte lineage: a transgenic mouse for developmental and physiological studies. J Neurosci Res 2002, 70:529-545.
- [60]Matthews MA, Duncan D: A quantitative study of morphological changes accompanying the initiation and progress of myelin production in the dorsal funiculus of the rat spinal cord. J Comp Neurol 1971, 142:1-22.
- [61]Boggs JM: Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 2006, 63:1945-1961.
- [62]Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M: Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 2008, 28:10434-10442.
- [63]Chang A, Tourtellotte WW, Rudick R, Trapp BD: Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 2002, 346:165-173.
- [64]Pluchino S, Muzio L, Imitola J, Deleidi M, Alfaro-Cervello C, Salani G, Porcheri C, Brambilla E, Cavasinni F, Bergamaschi A, et al.: Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain 2008, 131:2564-2578.
- [65]Berthet C, Klarmann KD, Hilton MB, Suh HC, Keller JR, Kiyokawa H, Kaldis P: Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell 2006, 10:563-573.
- [66]Jessen KR, Mirsky R: The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 2005, 6:671-682.
- [67]Atanasoski S, Boentert M, De Ventura L, Pohl H, Baranek C, Beier K, Young P, Barbacid M, Suter U: Postnatal Schwann cell proliferation but not myelination is strictly and uniquely dependent on cyclin-dependent kinase 4 (cdk4). Mol Cell Neurosci 2008, 37:519-527.
- [68]Akundi RS, Rivkees SA: Hypoxia alters cell cycle regulatory protein expression and induces premature maturation of oligodendrocyte precursor cells. PLoS One 2009, 4:e4739.
- [69]Adachi S, Ito H, Tamamori-Adachi M, Ono Y, Nozato T, Abe S, Ikeda M, Marumo F, Hiroe M: Cyclin A/cdk2 activation is involved in hypoxia-induced apoptosis in cardiomyocytes. Circ Res 2001, 88:408-414.
- [70]Anderson JA, Lewellyn AL, Maller JL: Ionizing radiation induces apoptosis and elevates cyclin A1-Cdk2 activity before but not after the midblastula transition in Xenopus. Mol Biol Cell 1997, 8:1195-1206.
- [71]Harvey KJ, Lukovic D, Ucker DS: Caspase-dependent Cdk activity is a requisite effector of apoptotic death events. J Cell Biol 2000, 148:59-72.
- [72]Zhou BB, Li H, Yuan J, Kirschner MW: Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Proc Natl Acad Sci U S A 1998, 95:6785-6790.
- [73]Hauck L, Hansmann G, Dietz R, von Harsdorf R: Inhibition of hypoxia-induced apoptosis by modulation of retinoblastoma protein-dependent signaling in cardiomyocytes. Circ Res 2002, 91:782-789.
- [74]Katchanov J, Harms C, Gertz K, Hauck L, Waeber C, Hirt L, Priller J, von Harsdorf R, Bruck W, Hortnagl H, et al.: Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J Neurosci 2001, 21:5045-5053.
- [75]Hakem A, Sasaki T, Kozieradzki I, Penninger JM: The cyclin-dependent kinase Cdk2 regulates thymocyte apoptosis. J Exp Med 1999, 189:957-968.
- [76]Li Y, Chopp M, Powers C, Jiang N: Immunoreactivity of cyclin D1/cdk4 in neurons and oligodendrocytes after focal cerebral ischemia in rat. J Cereb Blood Flow Metab 1997, 17:846-856.
- [77]van Lookeren Campagne M, Gill R: Cell cycle-related gene expression in the adult rat brain: selective induction of cyclin G1 and p21WAF1/CIP1 in neurons following focal cerebral ischemia. Neuroscience 1998, 84:1097-1112.
- [78]Liem DA, Zhao P, Angelis E, Chan SS, Zhang J, Wang G, Berthet C, Kaldis P, Ping P, MacLellan WR: Cyclin-dependent kinase 2 signaling regulates myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 2008, 45:610-616.
- [79]Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI: Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 2003, 53:454-468.
- [80]Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI: Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 2005, 102:8333-8338.
- [81]Faden AI, Movsesyan VA, Knoblach SM, Ahmed F, Cernak I: Neuroprotective effects of novel small peptides in vitro and after brain injury. Neuropharmacology 2005, 49:410-424.
- [82]Wu J, Stoica BA, Faden AI: Cell cycle activation and spinal cord injury. Neurotherapeutics 2011, 8:221-228.
- [83]Wu G, Cao J, Peng C, Yang H, Cui Z, Zhao J, Wu Q, Han J, Li H, Gu X, Zhang F: Temporal and spatial expression of cyclin H in rat spinal cord injury. Neuromolecular Med 2011, 13:187-196.
PDF