期刊论文详细信息
Clinical Epigenetics
DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia
Ann-Christine Syvänen9  Erik Forestier1,11  Gudmar Lönnerholm6  Mats G Gustafsson4  Kjeld Schmiegelow7  Josefine Palle6  Rolf Larsson4  Jukka Kanerva1,12  Ólafur G Jónsson5  Mats M Heyman2  Trond Flaegstad8  Jonas Abrahamsson3  Elin Övernäs9  Ann Nordgren1,10  Gisela Barbany1,10  Ingegerd Öfverholm1,10  Johan Dahlberg9  Lucia Cavelier1  Vasilios Zachariadis1,10  Christofer L Bäcklin4  Jessica Nordlund9 
[1] Department of Immunology, Genetics and Pathology, Uppsala University, Rudbecklaboratoriet, Uppsala, SE-751 85, Sweden;Childhood Cancer Research Unit, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden;Department of Pediatrics, Queen Silvia Children’s Hospital, Gothenburg, SE-416 85, Sweden;Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Uppsala, SE-751 85, Sweden;Pediatric Hematology-Oncology, Children’s Hospital, Barnaspitali Hringsins, Landspitali University Hospital, Reykjavik, Iceland;Department of Women’s and Children’s Health, Pediatric Oncology, Uppsala University, Uppsala University Hospital, Uppsala, SE-751 85, Sweden;Pediatrics and Adolescent Medicine, Rigshospitalet, and the Medical Faculty, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, DK-2100, Denmark;Department of Pediatrics, Tromsø University and University Hospital, Tromsø, N-9038, Norway;Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, SE-751 44, Sweden;Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, SE-171 76, Sweden;Department of Medical Biosciences, University of Umeå, Umeå, SE-901 85, Sweden;Division of Hematology-Oncology and Stem Cell Transplantation, Children’s Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, FIN-00029, Finland
关键词: epigenetics;    k array;    450 ;    RNA-seq;    Cytogenetics;    Subtyping;    CpG site;    Pediatric acute lymphoblastic leukemia;    DNA methylation;   
Others  :  1147927
DOI  :  10.1186/s13148-014-0039-z
 received in 2014-09-26, accepted in 2014-12-18,  发布年份 2015
PDF
【 摘 要 】

Background

We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA methylation as a complement to current diagnostic methods. A secondary aim was to gain insight into the functional role of DNA methylation in ALL.

Results

We used the methylation status of ~450,000 CpG sites in 546 well-characterized patients with T-ALL or seven recurrent B-cell precursor ALL subtypes to design and validate sensitive and accurate DNA methylation classifiers. After repeated cross-validation, a final classifier was derived that consisted of only 246 CpG sites. The mean sensitivity and specificity of the classifier across the known subtypes was 0.90 and 0.99, respectively. We then used DNA methylation classification to screen for subtype membership of 210 patients with undefined karyotype (normal or no result) or non-recurrent cytogenetic aberrations (‘other’ subtype). Nearly half (n = 106) of the patients lacking cytogenetic subgrouping displayed highly similar methylation profiles as the patients in the known recurrent groups. We verified the subtype of 20% of the newly classified patients by examination of diagnostic karyotypes, array-based copy number analysis, and detection of fusion genes by quantitative polymerase chain reaction (PCR) and RNA-sequencing (RNA-seq). Using RNA-seq data from ALL patients where cytogenetic subtype and DNA methylation classification did not agree, we discovered several novel fusion genes involving ETV6, RUNX1, and PAX5.

Conclusions

Our findings indicate that DNA methylation profiling contributes to the clarification of the heterogeneity in cytogenetically undefined ALL patient groups and could be implemented as a complementary method for diagnosis of ALL. The results of our study provide clues to the origin and development of leukemic transformation. The methylation status of the CpG sites constituting the classifiers also highlight relevant biological characteristics in otherwise unclassified ALL patients.

【 授权许可】

   
2015 Nordlund et al.; licensee Biomed Central.

【 预 览 】
附件列表
Files Size Format View
20150404064242355.pdf 1967KB PDF download
Figure 3. 195KB Image download
Figure 2. 24KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Inaba H, Greaves M, Mullighan CG: Acute lymphoblastic leukaemia. Lancet 2013, 381:1943-55.
  • [2]Harrison CJ: Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology Am Soc Hematol Educ Program 2013, 2013:118-25.
  • [3]Dario Campana M, Pui C-H: Diagnosis and treatment of childhood acute lymphoblastic leukemia. In Neoplastic diseases of the blood. Springer, New York; 2013:305-29.
  • [4]Schmiegelow K, Forestier E, Hellebostad M, Heyman M, Kristinsson J, Soderhall S, et al.: Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia. Leukemia 2010, 24:345-54.
  • [5]Pui CH, Carroll WL, Meshinchi S, Arceci RJ: Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 2011, 29:551-65.
  • [6]Olde Nordkamp L, Mellink C, van der Schoot E, van den Berg H: Karyotyping, FISH, and PCR in acute lymphoblastic leukemia: competing or complementary diagnostics? J Pediatr Hematol Oncol 2009, 31:930-5.
  • [7]Easwaran H, Tsai HC, Baylin SB: Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 2014, 54:716-27.
  • [8]Deaton AM, Bird A: CpG islands and the regulation of transcription. Genes Dev 2011, 25:1010-22.
  • [9]Nordlund J, Milani L, Lundmark A, Lonnerholm G, Syvanen AC: DNA methylation analysis of bone marrow cells at diagnosis of acute lymphoblastic leukemia and at remission. PLoS One 2012, 7:e34513.
  • [10]Martin-Subero JI, Ammerpohl O, Bibikova M, Wickham-Garcia E, Agirre X, Alvarez S, et al.: A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms. PLoS One 2009, 4:e6986.
  • [11]Chatterton Z, Morenos L, Mechinaud F, Ashley DM, Craig JM, Sexton-Oates A, et al.: Epigenetic deregulation in pediatric acute lymphoblastic leukemia. Epigenetics 2014, 9:459-67.
  • [12]Milani L, Lundmark A, Kiialainen A, Nordlund J, Flaegstad T, Forestier E, et al.: DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood 2010, 115:1214-25.
  • [13]You JS, Jones PA: Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 2012, 22:9-20.
  • [14]Nordlund J, Backlin CL, Wahlberg P, Busche S, Berglund EC, Eloranta ML, et al.: Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol 2013, 14:r105. BioMed Central Full Text
  • [15]Figueroa ME, Chen SC, Andersson AK, Phillips LA, Li Y, Sotzen J, et al.: Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. J Clin Invest 2013, 123:3099-111.
  • [16]Davidsson J, Lilljebjorn H, Andersson A, Veerla S, Heldrup J, Behrendtz M, et al.: The DNA methylome of pediatric acute lymphoblastic leukemia. Hum Mol Genet 2009, 18:4054-65.
  • [17]Rodriguez-Paredes M, Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med 2011, 17:330-9.
  • [18]Busche S, Ge B, Vidal R, Spinella JF, Saillour V, Richer C, et al.: Integration of high-resolution methylome and transcriptome analyses to dissect epigenomic changes in childhood acute lymphoblastic leukemia. Cancer Res 2013, 73:4323-36.
  • [19]Sarhadi VK, Lahti L, Scheinin I, Tyybakinoja A, Savola S, Usvasalo A, et al.: Targeted resequencing of 9p in acute lymphoblastic leukemia yields concordant results with array CGH and reveals novel genomic alterations. Genomics 2013, 102:182-8.
  • [20]Strehl S, Konig M, Dworzak MN, Kalwak K, Haas OA: PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13). Leukemia 2003, 17:1121-3.
  • [21]Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, et al.: Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012, 22:153-66.
  • [22]Xu XJ, Johnson EB, Leverton L, Arthur A, Watson Q, Chang FL, et al.: The advantage of using SNP array in clinical testing for hematological malignancies-a comparative study of three genetic testing methods. Cancer Genet 2013, 206:317-26.
  • [23]Kwee I, Rinaldi A, Rancoita P, Rossi D, Capello D, Forconi F, et al.: Integrated DNA copy number and methylation profiling of lymphoid neoplasms using a single array. Br J Haematol 2012, 156:354-7.
  • [24]Feber A, Guilhamon P, Lechner M, Fenton T, Wilson GA, Thirlwell C, et al.: Using high-density DNA methylation arrays to profile copy number alterations. Genome Biol 2014, 15:R30. BioMed Central Full Text
  • [25]Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, et al.: A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009, 10:125-34.
  • [26]Nordlund J, Kiialainen A, Karlberg O, Berglund EC, Goransson-Kultima H, Sonderkaer M, et al.: Digital gene expression profiling of primary acute lymphoblastic leukemia cells. Leukemia 2012, 26:1218-27.
  • [27]Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, et al.: Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003, 102:2951-9.
  • [28]Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, et al.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002, 1:133-43.
  • [29]Gandemer V, Rio AG, de Tayrac M, Sibut V, Mottier S, Ly Sunnaram B, et al.: Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics 2007, 8:385. BioMed Central Full Text
  • [30]Caudell D, Harper DP, Novak RL, Pierce RM, Slape C, Wolff L, et al.: Retroviral insertional mutagenesis identifies Zeb2 activation as a novel leukemogenic collaborating event in CALM-AF10 transgenic mice. Blood 2010, 115:1194-203.
  • [31]Meyer JA, Wang JH, Hogan LE, Yang JJ, Dandekar S, Patel JP, et al.: Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet 2013, 45:290-4.
  • [32]Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, et al.: Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med 2013, 19:368-71.
  • [33]Liang DC, Liu HC, Yang CP, Jaing TH, Hung IJ, Yeh TC, et al.: Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. Blood 2013, 121:2988-95.
  • [34]Collins EC, Rabbitts TH: The promiscuous MLL gene links chromosomal translocations to cellular differentiation and tumour tropism. Trends Mol Med 2002, 8:436-42.
  • [35]French CA, Kutok JL, Faquin WC, Toretsky JA, Antonescu CR, Griffin CA, et al.: Midline carcinoma of children and young adults with NUT rearrangement. J Clin Oncol 2004, 22:4135-9.
  • [36]French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA: BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res 2003, 63:304-7.
  • [37]Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al.: Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014, 371:1005-15.
  • [38]Ofverholm I, Tran AN, Heyman M, Zachariadis V, Nordenskjold M, Nordgren A, et al.: Impact of IKZF1 deletions and PAX5 amplifications in pediatric B-cell precursor ALL treated according to NOPHO protocols. Leukemia 2013, 27:1936-9.
  • [39]Olsson L, Castor A, Behrendtz M, Biloglav A, Forestier E, Paulsson K, et al.: Deletions of IKZF1 and SPRED1 are associated with poor prognosis in a population-based series of pediatric B-cell precursor acute lymphoblastic leukemia diagnosed between 1992 and 2011. Leukemia 2013, 28:302-10.
  • [40]Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M, et al.: A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007, 370:240-50.
  • [41]Biondi A, Schrappe M, De Lorenzo P, Castor A, Lucchini G, Gandemer V, et al.: Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol 2012, 13:936-45.
  • [42]Paulsson K, Johansson B: High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2009, 48:637-60.
  • [43]Zachariadis V, Gauffin F, Kuchinskaya E, Heyman M, Schoumans J, Blennow E, et al.: The frequency and prognostic impact of dic(9;20)(p13.2;q11.2) in childhood B-cell precursor acute lymphoblastic leukemia: results from the NOPHO ALL-2000 trial. Leukemia 2011, 25:622-8.
  • [44]Zachariadis V, Schoumans J, Ofverholm I, Barbany G, Halvardsson E, Forestier E, et al.: Detecting dic(9;20)(p13.2;p11.2)-positive B-cell precursor acute lymphoblastic leukemia in a clinical setting using fluorescence in situ hybridization. Leukemia 2013, 28:196-8.
  • [45]Tibshirani R, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 2002, 99:6567-72.
  • [46]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185-93.
  • [47]Thorvaldsdottir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14:178-92.
  • [48]Nicorici D, Satalan M, Edgren H, Kangaspeska S, Murumagi A, Kallioniemi O, et al. FusionCatcher—a tool for finding somatic fusion genes in paired-end RNA-sequencing data. bioRxiv. 2014. http://dx.doi.org/10.1101/011650.
  文献评价指标  
  下载次数:12次 浏览次数:3次