Journal of Neuroinflammation | |
Brain inflammation and hypertension: the chicken or the egg? | |
Urszula Demkow3  Magdalena Wszedybyl-Winklewska1  Marek Radkowski2  Pawel J Winklewski1  | |
[1] Institute of Human Physiology, Medical University of Gdansk, Tuwima Str. 15, Gdansk, 80-210, Poland;Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego Str. 3c, Warsaw, 02-106, Poland;Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Marszalkowska Str. 24, Warsaw, 00-576, Poland | |
关键词: Obesity; Chronic inflammation; Reactive oxygen species; Prorenin; Angiotensin II; Neurogenic hypertension; Brain inflammation; | |
Others : 1213711 DOI : 10.1186/s12974-015-0306-8 |
|
received in 2015-02-27, accepted in 2015-04-23, 发布年份 2015 | |
【 摘 要 】
Inflammation of forebrain and hindbrain nuclei controlling the sympathetic nervous system (SNS) outflow from the brain to the periphery represents an emerging concept of the pathogenesis of neurogenic hypertension. Angiotensin II (Ang-II) and prorenin were shown to increase production of reactive oxygen species and pro-inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α)) while simultaneously decreasing production of interleukin-10 (IL-10) in the paraventricular nucleus of the hypothalamus and the rostral ventral lateral medulla. Peripheral chronic inflammation and Ang-II activity seem to share a common central mechanism contributing to an increase in sympathetic neurogenic vasomotor tone and entailing neurogenic hypertension. Both hypertension and obesity facilitate the penetration of peripheral immune cells in the brain parenchyma. We suggest that renin-angiotensin-driven hypertension encompasses feedback and feedforward mechanisms in the development of neurogenic hypertension while low-intensity, chronic peripheral inflammation of any origin may serve as a model of a feedforward mechanism in this condition.
【 授权许可】
2015 Winklewski et al; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150614145911333.pdf | 503KB | download | |
Figure 1. | 36KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J: Global burden of hypertension: analysis of worldwide data. Lancet. 2005, 365:217-23.
- [2]Chobanian AV: Shattuck Lecture. The hypertension paradox–more uncontrolled disease despite improved therapy. N Engl J Med 2009, 361:878-87.
- [3]Coffman TM: Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011, 17:1402-9.
- [4]Muller DN, Mervaala EM, Schmidt F, Park JK, Dechend R, Genersch E, et al.: Effect of bosentan on NF-kappaB, inflammation, and tissue factor in angiotensin II-induced end-organ damage. Hypertension. 2000, 36:282-90.
- [5]Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al.: Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007, 204:2449-60.
- [6]Vinh A, Chen W, Blinder Y, Weiss D, Taylor WR, Goronzy JJ, et al.: Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation. 2010, 122:2529-37.
- [7]Dampney RA, Horiuchi J, Killinger S, Sheriff MJ, Tan PS, McDowall LM: Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol. 2005, 32:419-25.
- [8]Esler M: The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp Physiol. 2011, 96:611-22.
- [9]Takahashi H: Upregulation of the renin-angiotensin-aldosterone-ouabain system in the brain is the core mechanism in the genesis of all types of hypertension. Int J Hypertens. 2012, 2012:242786.
- [10]Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES: The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000, 52:595-638.
- [11]Paton JF, Waki H: Is neurogenic hypertension related to vascular inflammation of the brainstem? Neurosci Biobehav Rev. 2009, 33:89-94.
- [12]Winklewski PJ, Radkowski M, Demkow U: Cross-talk between the inflammatory response, sympathetic activation and pulmonary infection in the ischemic stroke. J Neuroinflammation. 2014, 11:213. BioMed Central Full Text
- [13]Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, et al.: Sympathetic modulation of immunity: relevance to disease. Cell Immunol. 2008, 252:27-56.
- [14]Nance DM, Sanders VM: Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun. 2007, 21:736-45.
- [15]Fliers E, Kreier F, Voshol PJ, Havekes LM, Sauerwein HP, Kalsbeek A, et al.: White adipose tissue: getting nervous. J Neuroendocrinol. 2003, 15:1005-10.
- [16]Ayala-Lopez N, Martini M, Jackson WF, Darios E, Burnett R, Seitz B, et al.: Perivascular adipose tissue contains functional catecholamines. Pharmacol Res Perspect. 2014, 2:e00041.
- [17]Kasparov S, Teschemacher AG: Altered central catecholaminergic transmission and cardiovascular disease. Exp Physiol. 2008, 93:725-40.
- [18]Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Ufnal M, Zera T: Brain and cardiovascular diseases: common neurogenic background of cardiovascular, metabolic and inflammatory diseases. J Physiol Pharmacol. 2010, 61:509-21.
- [19]McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, et al.: The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol. 2003, 35:901-18.
- [20]Ganong WF: Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol. 2000, 27:422-7.
- [21]Felder RB, Yu Y, Zhang ZH, Wei SG: Pharmacological treatment for heart failure: a view from the brain. Clin Pharmacol Ther. 2009, 86:216-20.
- [22]Felder RB: Mineralocorticoid receptors, inflammation and sympathetic drive in a rat model of systolic heart failure. Exp Physiol. 2010, 95:19-25.
- [23]Shi Z, Gan XB, Fan ZD, Zhang F, Zhou YB, Gao XY, et al.: Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiol. 2011, 203:289-97.
- [24]Saavedra JM, Angiotensin II: AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin Sci. 2012, 123:567-90.
- [25]Wu KL, Chan SH, Chan JY: Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation 2012, 9:212. BioMed Central Full Text
- [26]de Kloet AD, Krause EG, Shi PD, Zubcevic J, Raizada MK, Sumners C: Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol Ther. 2013, 138:428-40.
- [27]Paton JF, Wang S, Polson JW, Kasparov S: Signalling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension. J Mol Med. 2008, 86:705-10.
- [28]Zhang M, Mao Y, Ramirez SH, Tuma RF, Chabrashvili T: Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Neuroscience. 2010, 171:852-8.
- [29]Guillot FL, Audus KL: Angiotensin peptide regulation of bovine brain microvessel endothelial cell monolayer permeability. J Cardiovasc Pharmacol. 1991, 18:212-8.
- [30]Fleegal-DeMotta MA, Doghu S, Banks WA: Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009, 29:640-7.
- [31]Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE: Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 2014, 63:572-9.
- [32]Labus J, Häckel S, Lucka L, Danker K: Interleukin-1β induces an inflammatory response and the breakdown of the endothelial cell layer in an improved human THBMEC-based in vitro blood-brain barrier model. J Neurosci Methods. 2014, 228:35-45.
- [33]Rochfort KD, Collins LE, Murphy RP, Cummins PM: Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PLoS One. 2014, 9:e101815.
- [34]Paton JF, Raizada MK: Neurogenic hypertension. Exp Physiol. 2010, 95:569-71.
- [35]Reckelhoff JF, Romero JC: Role of oxidative stress in angiotensin-induced hypertension. Am J Physiol Regul Integr Comp Physiol. 2003, 284:R893-912.
- [36]Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ, Li Q, et al.: Brain microglial cytokines in neurogenic hypertension. Hypertension. 2010, 56:297-303.
- [37]Kang YM, Ma Y, Zheng JP, Elks C, Sriramula S, Yang ZM, et al.: Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovasc Res 2009, 82:503-12.
- [38]Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, et al.: Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res. 2009, 83:737-46.
- [39]Cardinale JP, Sriramula S, Mariappan N, Agarwal D, Francis J: Angiotensin II-induced hypertension is modulated by nuclear factor-kappa B in the paraventricular nucleus. Hypertension. 2012, 59:113-21.
- [40]Masson GS, Costa TS, Yshii L, Fernandes DC, Soares PP, Laurindo FR, et al.: Time-dependent effects of training on cardiovascular control in spontaneously hypertensive rats: role for brain oxidative stress and inflammation and baroreflex sensitivity. PLoS One. 2014, 9:e94927.
- [41]Welch WJ, Chabrashvili T, Solis G, Chen Y, Gill PS, Aslam S, et al.: Role of extracellular superoxide dismutase in the mouse angiotensin slow pressor response. Hypertension. 2006, 48:934-41.
- [42]Modlinger P, Chabrashvili T, Gill PS, Mendonca M, Harrison DG, Griendling KK, et al.: RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Hypertension. 2006, 47:238-44.
- [43]Nguyen G, Muller DN: The biology of the (pro)renin receptor. J Am Soc Nephrol. 2010, 21:18-23.
- [44]Zubcevic J, Jun JY, Lamont G, Murca TM, Shi P, Yuan W, et al.: Nucleus of the solitary tract(pro)renin receptor-mediated antihypertensive effect involves nuclear factor kappa B-cytokine signaling in the spontaneously hypertensive rat. Hypertension. 2013, 61:622-7.
- [45]Shi P, Grobe JL, Desland FA, Zhou G, Shen XZ, Shan Z, et al.: Direct pro-inflammatory effects of prorenin on microglia. PLoS One. 2014, 9:e92937.
- [46]Shan Z, Shi P, Cuadra AE, Dong Y, Lamont GJ, Li Q, et al.: Involvement of the brain(pro)renin receptor in cardiovascular homeostasis. Circ Res. 2010, 107:934-8.
- [47]Okamoto K, Aoki K: Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963, 27:282-93.
- [48]Friese RS, Mahboubi P, Mahapatra NR, Mahata SK, Schork NJ, Schmid-Schönbein GW, et al.: Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension. Am J Hypertens. 2005, 18:633-52.
- [49]Marvar PJ, Lob H, Vinh A, Zarreen F, Harrison DG: The central nervous system and inflammation in hypertension. Curr Opin Pharmacol. 2011, 11:156-61.
- [50]Li W, Peng H, Cao T, Sato R, McDaniels SJ, Kobori H, et al.: Brain-targeted (pro)renin receptor knockdown attenuates angiotensin II dependent hypertension. Hypertension. 2012, 59:1188-94.
- [51]Li W, Peng H, Mehaffey EP, Kimball CD, Grobe JL, van Gool JM, et al.: Ang II potentiates prorenin-induced TNFa production. Hypertension. 2014, 63:316-23.
- [52]Waki H, Gouraud SS, Maeda M, Raizada MK, Paton JF: Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Respir Physiol Neurobiol. 2011, 178:422-8.
- [53]Agarwal D, Welsch MA, Keller JN, Francis J: Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR. Basic Res Cardiol. 2011, 106:1069-85.
- [54]Kumagai H, Oshima N, Matsuura T, Iigaya K, Imai M, Onimaru H, et al.: Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens Res. 2012, 35:132-41.
- [55]Su Q, Qin DN, Wang FX, Ren J, Li HB, Zhang M, et al.: Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Toxicol Appl Pharmacol. 2014, 276:115-20.
- [56]Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, et al.: NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem. 2004, 279:1415-21.
- [57]Qin L, Li G, Qian X, Liu Y, Wu X, Liu B, et al.: Interactive role of the toll-like receptor4 and reactive oxygen species in LPS-induced microglia activation. Glia. 2005, 52:78-84.
- [58]Krishna M, Narang H: The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci. 2008, 65:3525-44.
- [59]Pawate S, Shen Q, Fan F, Bhat NR: Redox regulation of glial inflammatory response to lipopolysaccharide and interferon gamma. J Neurosci Res. 2004, 77:540-51.
- [60]Zhang ZH, Yu Y, Wei SG, Felder RB: Centrally administered lipopolysaccharide elicits sympathetic excitation via NAD(P)H oxidase-dependent mitogen-activated protein kinase signaling. J Hypertens. 2010, 28:806-16.
- [61]Zhang ZH, Wei SG, Francis J, Felder RB: Cardiovascular and renal sympathetic activation by blood-borne TNF-alpha in rat: the role of central prostaglandins. Am J Physiol Regul Integr Comp Physiol. 2003, 284:R916-27.
- [62]Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, et al.: Superoxide mediates sympathoexcitation in heart failure: roles of angiotensin II and NAD(P)H oxidase. Circ Res. 2004, 95:937-44.
- [63]Chan SH, Hsu KS, Huang CC, Wang LL, Ou CC, Chan JY: NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circ Res. 2005, 97:772-80.
- [64]Zucker IH, Gao L: The regulation of sympathetic nerve activity by angiotensin II involves reactive oxygen species and MAPK. Circ Res. 2005, 97:737-9.
- [65]Wei SG, Yu Y, Zhang ZH, Weiss RM, Felder RB: Mitogen-activated protein kinases mediate upregulation of hypothalamic angiotensin II type 1 receptors in heart failure rats. Hypertension. 2008, 52:679-86.
- [66]Wei SG, Yu Y, Zhang ZH, Weiss RM, Felder RB: Angiotensin II-triggered p44/42 mitogen-activated protein kinase mediates sympathetic excitation in heart failure rats. Hypertension. 2008, 52:342-50.
- [67]Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, et al.: Sympathoexcitation by central ANG II: roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM. Am J Physiol Heart Circ Physiol. 2005, 288:H2271-9.
- [68]Lindley TE, Doobay MF, Sharma RV, Davisson RL: Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction-induced heart failure. Circ Res. 2004, 94:402-9.
- [69]Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al.: Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008, 57:1470-81.
- [70]Terra X, Montagut G, Bustos M, Llopiz N, Ardèvol A, Bladé C, et al.: Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem. 2009, 20:210-8.
- [71]Endo Y, Tomofuji T, Ekuni D, Irie K, Azuma T, Tamaki N, et al.: Experimental periodontitis induces gene expression of proinflammatory cytokines in liver and white adipose tissue in obesity. J Periodontol. 2010, 81:520-6.
- [72]Manco M, Putignani L, Bottazzo GF: Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev. 2010, 31:817-44.
- [73]Marvar PJ, Thabet SR, Buzik TJ, Lob HE, McCann LA, Weyand C, et al.: Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res. 2010, 107:263-70.
- [74]Carrasquillo Y, Burkhalter A, Nerbonne JM: A-type K+ channels encoded by Kv4.2, Kv4.3 and Kv1.4 differentially regulate intrinsic excitability of cortical pyramidal neurons. J Physiol 2012, 590:3877-90.
- [75]Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al.: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003, 112:1821-30.
- [76]Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al.: Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012, 122:153-62.
- [77]Yi CX, Al-Massadi O, Donelan E, Lehti M, Weber J, Ress C, et al.: Exercise protects against high-fat diet-induced hypothalamic inflammation. Physiol Behav. 2012, 106:485-90.
- [78]Buckman LB, Thompson MM, Moreno HN, Ellacott KL: Regional astrogliosis in the mouse hypothalamus in response to obesity. J Comp Neurol. 2013, 521:1322-33.
- [79]Hsuchou H, He Y, Kastin AJ, Tu H, Markadakis EN, Rogers RC, et al.: Obesity induces functional astrocytic leptin receptors in hypothalamus. Brain. 2009, 132:889-902.
- [80]de Kloet AD, Pioquinto DJ, Nguyen D, Wang L, Smith JA, Hiller H, et al.: Obesity induces neuroinflammation mediated by altered expression of the renin-angiotensin system in mouse forebrain nuclei. Physiol Behav. 2014, 136:31-8.
- [81]Hilzendeger AM, Morgan DA, Brooks L, Dellsperger D, Liu X, Grobe JL, et al.: A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2012, 303:H197-206.
- [82]Arnold AC, Shaltout HA, Gallagher PE, Diz DI: Leptin impairs cardiovagal baroreflex function at the level of the solitary tract nucleus. Hypertension. 2009, 54:1001-8.
- [83]Hayes MR, Skibicka KP, Leichner TM, Guarnieri DJ, DiLeone RJ, Bence KK, et al.: Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 2010, 11:77-83.
- [84]Mark AL, Agassandian K, Morgan DA, Liu X, Cassell MD, Rahmouni K: Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension. 2009, 53:375-80.
- [85]Smith PM, Chambers AP, Price CJ, Ho W, Hopf C, Sharkey KA, et al.: The subfornical organ: a central nervous system site for actions of circulating leptin. Am J Physiol Regul Integr Comp Physiol. 2009, 296:R512-20.
- [86]Smith PM, Ferguson AV: Cardiovascular actions of leptin in the subfornical organ are abolished by diet-induced obesity. J Neuroendocrinol. 2012, 24:04-510.
- [87]Marsh AJ, Fontes MA, Killinger S, Pawlak DB, Polson JW, Dampney RA: Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. Hypertension. 2003, 42:488-93.
- [88]Akiyama H, Ikeda K, Katoh M, McGeer EG, McGeer PL: Expression of MRP14, 27E10, interferon-alpha and leukocyte common antigen by reactive microglia in postmortem human brain tissue. J Neuroimmunol. 1994, 50:195-201.
- [89]Sedgwick JD, Ford AL, Foulcher E, Airriess R: Central nervous system microglial cell activation and proliferation follows direct interaction with tissue-infiltrating T cell blasts. J Immunol. 1998, 160:5320-30.
- [90]Nikodemova M, Watters JJ: Efficient isolation of live microglia with preserved phenotypes from adult mouse brain. J Neuroinflammation. 2012, 9:147. BioMed Central Full Text
- [91]Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003, 112:1796-808.
- [92]Buckman LB, Hasty AH, Flaherty DK, Buckman CT, Thompson MM, Matlock BK, et al.: Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun. 2014, 35:33-42.
- [93]Simard AR, Soulet D, Gowing G, Julien JP, Rivest S: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006, 49:489-502.