期刊论文详细信息
BMC Veterinary Research
Distribution of immunoglobulin G antibody secretory cells in small intestine of Bactrian camels (Camelus bactrianus)
Shuai Jia1  Wen-Hui Wang1  Wang-Dong Zhang1 
[1] College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
关键词: Mucosal immunity;    Distribution;    Small intestine of Bactrian camel;    IgG ASCs;   
Others  :  1224291
DOI  :  10.1186/s12917-015-0538-y
 received in 2015-01-24, accepted in 2015-08-07,  发布年份 2015
PDF
【 摘 要 】

Background

To explore the morphological evidence of immunoglobulin G (IgG) participating in intestinal mucosal immunity, 8 healthy adult Bactrian camels used. First, IgG was successfully isolated from their serum and rabbit antibody against Bactrian camels IgG was prepared. The IgG antibody secretory cells (ASCs) in small intestine were particularly observed through immumohistochemical staining, then after were analyzed by statistical methods.

Results

The results showed that the IgG ASCs were scattered in the lamina propria (LP) and some of them aggregated around of the intestinal glands. The IgG ASCs density was the highest from middle segment of duodenum to middle segment of jejunum, and then in ended segment of jejunum and initial segment of ileum, the lowest was in initial segment of duodenum, in middle and ended segment of ileum.

Conclusions

It was demonstrated that the IgG ASCs mainly scattered in the effector sites of the mucosal immunity, though the density of IgG ASCs was different in different segment of small intestine. Moreover, this scatted distribution characteristic would provide a morphology basis for research whether IgG form a full-protection and immune surveillance in mucosal immunity homeostasis of integral intestine.

【 授权许可】

   
2015 Zhang et al.

【 预 览 】
附件列表
Files Size Format View
20150909053959131.pdf 2442KB PDF download
Fig. 6. 40KB Image download
Fig. 5. 102KB Image download
Fig. 4. 93KB Image download
Fig. 3. 120KB Image download
Fig. 2. 42KB Image download
Fig. 1. 41KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Wernery U. Camelid immunoglobulins and their importance for the new-born—a review. J Vet Med B Infect Dis Vet Public Health. 2001; 48(8):561-8.
  • [2]Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R. Naturally occurring antibodies devoid of light chains. Nature. 1993; 363(6428):446-8.
  • [3]Tillib SV. “Camel nanoantibody” is an efficient tool for research, diagnostics and therapy. Mol Biol. 2011; 45(1):77-85.
  • [4]Griffin LM, Snowden JR, Lawson AD, Wernery U, Kinne J, Baker TS. Analysis of heavy and light chain sequences of conventional camelid antibodies from Camelus dromedarius and Camelus bactrianus species. J Immunol Methods. 2014; 405:35-46.
  • [5]Vu KB, Ghahroudi MA, Wyns L, Muyldermans S. Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol. 1997; 34(16–17):1121-31.
  • [6]De Genst E, Saerens D, Muyldermans S, Conrath K. Antibody repertoire development in camelids. Dev Comp Immunol. 2006; 30(1–2):187-98.
  • [7]Olichon A, Surrey T. Selection of genetically encoded fluorescent single domain antibodies engineered for efficient expression in Escherichia coli. J Biol Chem. 2007; 282(50):36314-20.
  • [8]Frenken LG, van der Linden RH, Hermans PW, Bos JW, Ruuls RC, de Geus B, Verrips CT. Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol. 2000; 78(1):11-21.
  • [9]Rajabi-Memari H, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Esmaili A. Expression and characterization of a recombinant single-domain monoclonal antibody against MUC1 mucin in tobacco plants. Hybridoma. 2006; 25(4):209-15.
  • [10]Hultberg A, Tremblay DM, de Haard H, Verrips T, Moineau S, Hammarstrom L, Marcotte H. Lactobacillli expressing llama VHH fragments neutralise Lactococcus phages. BMC Biotechnol. 2007; 7:58. BioMed Central Full Text
  • [11]Nguyen VK, Hamers R, Wyns L, Muyldermans S. Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J. 2000; 19(5):921-30.
  • [12]Siontorou CG. Nanobodies as novel agents for disease diagnosis and therapy. Int J Nanomedicine. 2013; 8:4215-27.
  • [13]Shaker GH. Evaluation of antidiphtheria toxin nanobodies. Nanotechnol Sci Appl. 2010; 3:29-35.
  • [14]Richard G, Meyers AJ, McLean MD, Arbabi-Ghahroudi M, MacKenzie R, Hall JC. In vivo neutralization of alpha-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody. PLoS One. 2013; 8(7):e69495.
  • [15]Wang W-H. Observations on aggregated lymphoid nodules in the cardiac glandular areas of the Bactrian camel (Camelus bactrianus). Vet J. 2003; 166(2):205-9.
  • [16]Xu XH, Wang WH, Gao Q, Qi SS, He WH, Tai LF, Zhaxi YP, Guan F. The anatomical characteristics of the aggregated lymphoid nodule area in the stomach of Bactrian camels (Camelus bactrianus) of different ages. Vet J. 2010; 184(3):362-5.
  • [17]Qi SS, Wang WH, Gao Q, Xu XH, He WH, Zhaxi YP, Tai LF. Age-related changes in the anatomical characteristics of Peyer’s patches in small intestine of Bactrian camels (Camelus bactrianus). Trop Anim Health Prod. 2011; 43(6):1219-23.
  • [18]Zhang WD, Wang WH, Xu XH, Zhaxi YP, Zhang LJ, Qi SS, Li H, Tan XF. The histological characteristics of the aggregated lymphoid nodules area in abomasum of Bactrian camels (Camelus bactrianus) of different ages. Vet Immunol Immunopathol. 2012; 147(3–4):147-53.
  • [19]ZhaXi Y, Wang W, Zhang W, Gao Q, Guo M, Jia S. Morphologic observation of mucosa-associated lymphoid tissue in the large intestine of Bactrian camels (Camelus bactrianus). Anat Rec. 2014; 297(7):1292-301.
  • [20]Marshak DR, Kadonaga JT, Burgess RR, Knuth MW, Brennan WA, Lin MS-H. Strategies for protein purification and characterization: a laboratory course manual. Gold spring Harbor Laboratory Press, Cold Spring Harbor; 1996.
  • [21]Hebert GA, Pelham PL, Pittman B. Determination of the optimal ammonium sulfate concentration for the fractionation of rabbit, sheep, horse, and goat antisera. Appl Microbiol. 1973; 25(1):26-36.
  • [22]Hebert GA. Ammonium sulfate fractionation of sera: mouse, hamster, guinea pig, monkey, chimpanzee, swine, chicken, and cattle. Appl Microbiol. 1974; 27(2):389-93.
  • [23]Liu YB, Gou SJ. Animal immunology experiment technology. Jilin science &technology press, Jilin; 1997. (in Chinese)
  • [24]Liu ZP, Ma Z. Blood component of Bactrian camel compared with other animals. Chin J Sci Technol. 1992;22(11):31–3 (in Chinese).
  • [25]Ahmadi-hamedani M, Ghazvinian K, Kokhaei P, Barati M, Mahdavi A. Comparison of effects of age and sex on serum protein electrophoretic pattern in one-humped camels (Camelus dromedarius) in Semnan, Iran. Open Vet J. 2014; 4(1):4-8.
  • [26]Zhang LJ. Study on the distribution of Bactrian camel mucosal immune fector molecules sIgA secreting plasma cells in Bactrian camel intestine. Gansu Agricultural University, Lanzhou; 2012. (in Chinese)
  • [27]Hongbo F, Hasisurong J. Separation and purification of IgG in Bactrian camel colostrum and its transfer to newborn camel calves. Vet Sci China. 2006; 36(5):220-224.
  • [28]Li CW. Modern immunochemical techniques. Shang hai Scientific and Technological Literature Publishing House, Shang hai; 1992. (in Chinese)
  • [29]Liebler-Tenorio EM, Pabst R. MALT structure and function in farm animals. Vet Res. 2006; 37(3):257-80.
  • [30]Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. The function of Fcgamma receptors in dendritic cells and macrophages. Nat Rev Immunol. 2014; 14(2):94-108.
  • [31]Cerutti A, Chen K, Chorny A. Immunoglobulin responses at the mucosal interface. Annu Rev Immunol. 2011; 29:273-93.
  • [32]Cerutti A. Immunology. IgA changes the rules of memory. Science. 2010; 328(5986):1646-7.
  • [33]Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, Cahenzli J, Velykoredko Y, Balmer ML, Endt K, Geuking MB, Curtiss R, McCoy KD, Macpherson AJ. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010; 328(5986):1705-9.
  • [34]Bruno ME, Frantz AL, Rogier EW, Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-kappaB pathways in intestinal epithelial cells. Mucosal Immunol. 2011; 4(4):468-78.
  • [35]Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2008; 1(1):11-22.
  • [36]Mora JR, von Andrian UH. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 2008; 1(2):96-109.
  • [37]Ben Suleiman Y, Yoshida M, Nishiumi S, Tanaka H, Mimura T, Nobutani K, Yamamoto K, Takenaka M, Aoganghua A, Miki I, Ota H, Takahashi S, Matsui H, Nakamura M, Blumberg RS, Azuma T. Neonatal Fc receptor for IgG (FcRn) expressed in the gastric epithelium regulates bacterial infection in mice. Mucosal Immunol. 2012; 5(1):87-98.
  • [38]Hornby PJ, Cooper PR, Kliwinski C, Ragwan E, Mabus JR, Harman B, Thompson S, Kauffman AL, Yan Z, Tam SH, Dorai H, Powers GD, Giles-Komar J. Human and non-human primate intestinal FcRn expression and immunoglobulin G transcytosis. Pharm Res. 2014; 31(4):908-22.
  文献评价指标  
  下载次数:12次 浏览次数:10次