期刊论文详细信息
Critical Care
Identification of sepsis subtypes in critically ill adults using gene expression profiling
Anthony S McLean1  Benjamin M Tang3  David M Maslove2 
[1] Department of Intensive Care Medicine, Nepean Hospital and Nepean Clinical School, University of Sydney, Penrith, NSW 2750, Australia;Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, CA, USA;School of Public Health, Faculty of Medicine, University of Sydney, NSW 2006, Australia
关键词: intensive care;    critical care;    biomedical informatics;    microarray analysis;    gene expression profiling;    septic shock;    severe sepsis;    Sepsis;   
Others  :  820749
DOI  :  10.1186/cc11667
 received in 2012-02-28, accepted in 2012-10-04,  发布年份 2012
PDF
【 摘 要 】

Introduction

Sepsis is a syndromic illness that has traditionally been defined by a set of broad, highly sensitive clinical parameters. As a result, numerous distinct pathophysiologic states may meet diagnostic criteria for sepsis, leading to syndrome heterogeneity. The existence of biologically distinct sepsis subtypes may in part explain the lack of actionable evidence from clinical trials of sepsis therapies. We used microarray-based gene expression data from adult patients with sepsis in order to identify molecularly distinct sepsis subtypes.

Methods

We used partitioning around medoids (PAM) and hierarchical clustering of gene expression profiles from neutrophils taken from a cohort of septic patients in order to identify distinct subtypes. Using the medoids learned from this cohort, we then clustered a second independent cohort of septic patients, and used the resulting class labels to evaluate differences in clinical parameters, as well as the expression of relevant pharmacogenes.

Results

We identified two sepsis subtypes based on gene expression patterns. Subtype 1 was characterized by increased expression of genes involved in inflammatory and Toll receptor mediated signaling pathways, as well as a higher prevalence of severe sepsis. There were differences between subtypes in the expression of pharmacogenes related to hydrocortisone, vasopressin, norepinephrine, and drotrecogin alpha.

Conclusions

Sepsis subtypes can be identified based on different gene expression patterns. These patterns may generate hypotheses about the underlying pathophysiology of sepsis and suggest new ways of classifying septic patients both in clinical practice, and in the design of clinical trials.

【 授权许可】

   
2012 Maslove et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712054018557.pdf 1983KB PDF download
Figure 5. 17KB Image download
Figure 4. 26KB Image download
Figure 3. 20KB Image download
Figure 2. 108KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Marshall JC: Sepsis: rethinking the approach to clinical research. J Leuko Biol 2007, 83:471-482.
  • [2]Cohen J, Opal S, Calandra T: Sepsis studies need new direction. Lancet Infect Dis 2012, 12:503-505.
  • [3]Riedemann NC, Guo RF, Ward PA: The enigma of sepsis. J Clin Invest 2003, 112:460-467.
  • [4]Wong HR: Clinical review: sepsis and septic shock - the potential of gene arrays. Crit Care 2012, 16:204.
  • [5]Wong HR, Cvijanovich N, Lin R, Allen GL, Thomas NJ, Willson DF, Freishtat RJ, Anas N, Meyer K, Checchia PA, Monaco M, Odom K, Shanley TP: Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Med 2009, 7:34. BioMed Central Full Text
  • [6]Wong HR, Wheeler DS, Tegtmeyer K, Poynter SE, Kaplan JM, Chima RS, Stalets E, Basu RK, Doughty LA: Toward a clinically feasible gene expression-based subclassification strategy for septic shock: proof of concept. Crit Care Med 2010, 38:1955-1961.
  • [7]Wong HR, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Lin R, Shanley TP, Bigham MT, Wheeler DS, Doughty LA, Tegtmeyer K, Poynter SE, Kaplan JM, Chima RS, Stalets E, Basu RK, Varisco BM, Barr FE: Validation of a gene expression-based subclassification strategy for pediatric septic shock. Crit Care Med 2011, 39:2511-2517.
  • [8]Tang BM, McLean AS, Dawes IW, Huang SJ, Lin RC: The use of gene-expression profiling to identify candidate genes in human sepsis. Am J Respir Crit Care Med 2007, 176:676-684.
  • [9]Tang BM, McLean AS, Dawes IW, Huang SJ, Cowley MJ, Lin RC: Gene-expression profiling of Gram-positive and Gram-negative sepsis in critically ill patients. Crit Care Med 2008, 36:1125-1128.
  • [10]GEO - Gene Expression Omnibus (NCBI) [http://www.ncbi.nlm.nih.gov/geo/] webcite
  • [11]Handl J, Knowles J, Kell DB: Computational cluster validation in post-genomic data analysis. Bioinformatics 2005, 21:3201-3212.
  • [12]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001, 98:5116-5121.
  • [13]Wang J, Wen S, Symmans WF, Pusztai L, Coombes KR: The bimodality index: a criterion for discovering and ranking bimodal signatures from cancer gene expression profiling data. Cancer Inform 2009, 7:199-216.
  • [14]Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N, Ladunga I, Ulitsky-Lazareva B, Muruganujan A, Rabkin S, Vandergriff JA, Doremieux O: PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res 2003, 31:334-341. Erratum in: Nucleic Acids Res 2003, 31:2024
  • [15]McDonagh EM, Whirl-Carrillo M, Garten Y, Altman RB, Klein TE: From pharmacogenomic knowledge acquisition to clinical applications: the PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark Med 2011, 5:795-806.
  • [16]Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q: The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 2010, 38:W214-220.
  • [17]R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
  • [18]Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403:503-511.
  • [19]Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature 2000, 406:747-752.
  • [20]Wigle DA, Jurisica I, Radulovich N, Pintilie M, Rossant J, Liu N, Lu C, Woodgett J, Seiden I, Johnston M, Keshavjee S, Darling G, Winton T, Breitkreutz B-J, Jorgenson P, Tyers M, Shepherd FA, Tsao MS: Molecular profiling of non-small cell lung cancer and correlation with disease-free survival. Cancer Res 2002, 62:3005-3008.
  • [21]Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000, 406:536-540.
  • [22]Martins PS, Brunialti MK, Martos LS, Machado FR, Assunçao MS, Blecher S, Salomao R: Expression of cell surface receptors and oxidative metabolism modulation in the clinical continuum of sepsis. Crit Care 2008, 12:R25. BioMed Central Full Text
  • [23]Salomao R, Brunialti MK, Gomes NE, Mendes ME, Diaz RS, Komninakis S, Machado FR, da Silva ID, Rigato O: Toll-like receptor pathway signaling is differently regulated in neutrophils and peripheral mononuclear cells of patients with sepsis, severe sepsis, and septic shock. Crit Care Med 2009, 37:132-139.
  • [24]Salomão R, Martins PS, Brunialti MK, Fernandes Mda L, Martos LS, Mendes ME, Gomes NE, Rigato O: TLR signaling pathway in patients with sepsis. Shock 2008, 30(Suppl 1):73-77.
  • [25]Collin M, Rossi A, Cuzzocrea S, Patel NS, Di Paola R, Hadley J, Collino M, Sautebin L, Thiemermann C: Reduction of the multiple organ injury and dysfunction caused by endotoxemia in 5-lipoxygenase knockout mice and by the 5-lipoxygenase inhibitor zileuton. J Leukoc Biol 2004, 76:961-970.
  • [26]Bitto A, Minutoli L, David A, Irrera N, Rinaldi M, Venuti FS, Squadrito F, Altavilla D: Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit Care 2012, 16:R32. BioMed Central Full Text
  • [27]Tsujimoto H, Ono S, Efron PA, Scumpia PO, Moldawer LL, Mochizuki H: Role of Toll-like receptors in the development of sepsis. Shock 2008, 29:315-321.
  • [28]Wittebole X, Castanares-Zapatero D, Laterre PF: Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediators Inflamm 2010, 2010:568396.
  • [29]Barochia A, Solomon S, Cui X, Natanson C, Eichacker PQ: Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical and clinical studies. Expert Opin Drug Metab Toxicol 2011, 7:479-494.
  • [30]Aneja R, Carcillo J: Differences between adult and pediatric septic shock. Minerva Anestesiol 2011, 77:986-992.
  • [31]Russell JA: Gene expression in human sepsis: what have we learned? Crit Care 2011, 15:121.
  • [32]Tang BM, Huang SJ, McLean AS: Genome-wide transcription profiling of human sepsis: a systematic review. Crit Care 2010, 14:R237. BioMed Central Full Text
  • [33]Polpitiya AD, McDunn JE, Burykin A, Ghosh BK, Cobb JP: Using systems biology to simplify complex disease: immune cartography. Crit Care Med 2009, 37:S16-21.
  • [34]Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, Hayden DL, Hennessy L, Moore EE, Minei JP, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Brownstein BH, Mason PH, Baker HV, Finnerty CC, Jeschke MG, López MC, Klein MB, Gamelli RL, Gibran NS, Arnoldo B, Xu W, Zhang Y, Calvano SE, McDonald-Smith GP, et al.: A genomic storm in critically injured humans. J Exp Med 2011, 208:2581-2590.
  • [35]Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG: Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 2007, 39:226-231.
  • [36]Quackenbush J: Computational analysis of microarray data. Nat Rev Genet 2001, 2:418-427.
  • [37]Yin-Goen Q, Dale J, Yang W-L, Phan J, Moffitt R, Petros JA, Datta MW, Amin MB, Wang MD, Young AN: Advances in molecular classification of renal neoplasms. Histol Histopathol 2006, 21:325-339.
  • [38]van Rooden SM, Heiser WJ, Kok JN, Verbaan D, van Hilten JJ, Marinus J: The identification of Parkinson's disease subtypes using cluster analysis: a systematic review. Mov Disord 2010, 25:969-978.
  文献评价指标  
  下载次数:32次 浏览次数:11次