期刊论文详细信息
EvoDevo
Development of the nervous system in Solenogastres (Mollusca) reveals putative ancestral spiralian features
Andreas Wanninger1  Tim Wollesen1  Christiane Todt2  Maik Scherholz1  Emanuel Redl1 
[1] University of Vienna, Faculty of Life Sciences, Department of Integrative Zoology, Althanstraße 14, 1090 Vienna, Austria;University of Bergen, University Museum, The Natural History Collections, Allégaten 41, 5007 Bergen, Norway
关键词: last common spiralian ancestor;    evolution;    apical organ;    segmentation;    Neomeniomorpha;    Aplacophora;   
Others  :  1093121
DOI  :  10.1186/2041-9139-5-48
 received in 2014-09-16, accepted in 2014-12-02,  发布年份 2014
PDF
【 摘 要 】

Background

The Solenogastres (or Neomeniomorpha) are a taxon of aplacophoran molluscs with contentious phylogenetic placement. Since available developmental data on non-conchiferan (that is, aculiferan) molluscs mainly stem from polyplacophorans, data on aplacophorans are needed to clarify evolutionary questions concerning the morphological features of the last common ancestor (LCA) of the Aculifera and the entire Mollusca. We therefore investigated the development of the nervous system in two solenogasters, Wirenia argentea and Gymnomenia pellucida, using immunocytochemistry and electron microscopy.

Results

Nervous system formation starts simultaneously from the apical and abapical pole of the larva with the development of a few cells of the apical organ and a posterior neurogenic domain. A pair of neurite bundles grows out from both the neuropil of the apical organ and the posterior neurogenic domain. After their fusion in the region of the prototroch, which is innervated by an underlying serotonin-like immunoreactive (−LIR) plexus, the larva exhibits two longitudinal neurite bundles - the future lateral nerve cords. The apical organ in its fully developed state exhibits approximately 8 to 10 flask-shaped cells but no peripheral cells. The entire ventral nervous system, which includes a pair of longitudinal neurite bundles (the future ventral nerve cords) and a serotonin-LIR ventromedian nerve plexus, appears simultaneously and is established after the lateral nervous system. During metamorphosis the apical organ and the prototrochal nerve plexus are lost.

Conclusions

The development of the nervous system in early solenogaster larvae shows striking similarities to other spiralians, especially polychaetes, in exhibiting an apical organ with flask-shaped cells, a single pair of longitudinal neurite bundles, a serotonin-LIR innervation of the prototroch, and formation of these structures from an anterior and a posterior neurogenic domain. This provides evidence for an ancestral spiralian pattern of early nervous system development and a LCA of the Spiralia with a single pair of nerve cords. In later nervous system development, however, the annelids deviate from all other spiralians including solenogasters in forming a posterior growth zone, which initiates teloblastic growth. Since this mode of organogenesis is confined to annelids, we conclude that the LCA of both molluscs and spiralians was unsegmented.

【 授权许可】

   
2014 Redl et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150130160556560.pdf 3549KB PDF download
Figure 11. 204KB Image download
Figure 10. 206KB Image download
Figure 9. 179KB Image download
Figure 8. 193KB Image download
Figure 7. 70KB Image download
Figure 6. 233KB Image download
Figure 5. 168KB Image download
Figure 4. 163KB Image download
Figure 3. 179KB Image download
Figure 2. 148KB Image download
Figure 1. 155KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Salvini-Plawen LV: Early evolution and the primitive groups. In The Mollusca, Volume 10. Edited by Trueman ER, Clarke MR. Orlando: Academic Press; 1985:59-150.
  • [2]Scheltema AH, Tscherkassky M, Kuzirian AM: Aplacophora. In Microscopic Anatomy of Invertebrates, Volume 5. Edited by Harrison FW, Kohn AJ. New York: Wiley-Liss; 1994:13-54.
  • [3]Salvini-Plawen LV: Zur Morphologie und Phylogenie der Mollusken: Die Beziehungen der Caudofoveata und der Solenogastres als Aculifera, als Mollusca und als Spiralia (nebst einem Beitrag zur Phylogenie der coelomatischen Räume). Z wiss Zool 1972, 184:205-394.
  • [4]Salvini-Plawen LV, Steiner G: Synapomorphies and plesiomorphies in higher classification of Mollusca. In Origin and Evolutionary Radiation of the Mollusca. Edited by Taylor JD. New York: Oxford University Press; 1996:29-51.
  • [5]Salvini-Plawen LV, Steiner G: The Testaria concept (Polyplacophora + Conchifera) updated. J Nat Hist 2014, 48:2751-2772.
  • [6]Haszprunar G: Is the Aplacophora monophyletic? A cladistic point of view. Amer Malac Bull 2000, 15:115-130.
  • [7]Haszprunar G, Wanninger A: Molluscan muscle systems in development and evolution. J Zool Syst Evol Res 2000, 38:157-163.
  • [8]Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM: Phylogenomics reveals deep molluscan relationships. Nature 2011, 477:452-456.
  • [9]Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SCS, Rouse GW, Giribet G, Dunn CW: Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 2011, 480:364-367.
  • [10]Osca D, Irisarri I, Todt C, Grande C, Zardoya R: The complete mitochondrial genome of Scutopus ventrolineatus (Mollusca: Chaetodermomorpha) supports the Aculifera hypothesis. BMC Evol Biol 2014, 14:197.
  • [11]Scheltema AH: Aplacophora as progenetic Aculiferans and the coelomate origin of mollusks as the sister taxon of Sipuncula. Biol Bull 1993, 184:57-78.
  • [12]Scheltema AH: Phylogenetic position of Sipuncula, Mollusca and the progenetic Aplacophora. In Origin and Evolutionary Radiation of the Mollusca. Edited by Taylor JD. New York: Oxford University Press; 1996:53-58.
  • [13]Ivanov DL: Origin of Aculifera and problems of monophyly of higher taxa in molluscs. In Origin and Evolutionary Radiation of the Mollusca. Edited by Taylor JD. New York: Oxford University Press; 1996:59-65.
  • [14]Scherholz M, Redl E, Wollesen T, Todt C, Wanninger A: Aplacophoran mollusks evolved from ancestors with polyplacophoran-like features. Curr Biol 2013, 23:2130-2134.
  • [15]Giribet G, Okusu A, Lindgren AR, Huff SW, Schrödl M, Nishiguchi MK: Evidence for a clade composed of molluscs with serially repeated structures: Monoplacophorans are related to chitons. PNAS 2006, 103:7723-7728.
  • [16]Wilson NG, Rouse GW, Giribet G: Assessing the molluscan hypothesis Serialia (Monoplacophora + Polyplacophora) using novel molecular data. Mol Phyl Evol 2010, 54:187-193.
  • [17]Stöger I, Sigwart JD, Kano Y, Knebelsberger T, Marshall BA, Schwabe E, Schrödl M: The continuing debate on deep molluscan phylogeny: evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora). BioMed Res Internat 2013, 2013:407072.
  • [18]Thiele J: Die systematische Stellung der Solenogastren und die Phylogenie der Mollusken. Z wiss Zool 1902, 72:249-466.
  • [19]Nierstrasz HF, Stork HA: Monographie der Solenogastren des Golfes von Neapel. Zoologica 1940, 36:1-92.
  • [20]Salvini-Plawen LV: Die ‘Funktions-Coelomtheorieʼ in der Evolution der Mollusken. Syst Zool 1968, 17:192-208.
  • [21]Haszprunar G: The Mollusca: coelomate turbellarians or mesenchymate annelids? In Origin and Evolutionary Radiation of the Mollusca. Edited by Taylor JD. New York: Oxford University Press; 1996:3-28.
  • [22]Bartolomaeus T: Die Leibeshöhlenverhältnisse und Verwandtschaftsbeziehungen der Spiralia. Verh Dt Zool Ges 1993, 86(1):42.
  • [23]Ax P: Das System der Metazoa II. Ein Lehrbuch der phylogenetischen Systematik. Stuttgart: Gustav Fischer Verlag; 1999.
  • [24]Wanninger A, Fuchs J, Haszprunar G: Anatomy of the serotonergic nervous system of an entoproct creeping-type larva and its phylogenetic implications. Invertebr Biol 2007, 126:268-278.
  • [25]Haszprunar G, Wanninger A: On the fine structure of the creeping larva of Loxosomella murmanica: additional evidence for a clade of Kamptozoa (Entoprocta) and Mollusca. Acta Zool 2008, 89:137-148.
  • [26]Wanninger A: Comparative lophotrochozoan neurogenesis and larval neuroanatomy: Recent advances from previously neglected taxa. Acta Biol Hungarica 2008, 59(Suppl 2):127-136.
  • [27]Wanninger A: Shaping the things to come: Ontogeny of lophotrochozoan neuromuscular systems and the Tetraneuralia concept. Biol Bull 2009, 216:293-306.
  • [28]Naef A: Studien zur generellen Morphologie der Mollusken. 3. Teil: Die typischen Beziehungen der Weichtierklassen untereinander und das Verhältnis ihrer Urformen zu anderen Cölomaten. Erg u Fortschr Zool 1924, 6:27-124.
  • [29]Gutmann WF: Die Funktion des abgewandelten Coeloms. Z zool Syst Evolut-forsch 1969, 7:259-273.
  • [30]Gutmann WF: Die Evolution der Mollusken-Konstruktion: ein phylogenetisches Modell. Aufs u Red senckenb naturf Ges 1974, 25:1-84.
  • [31]Götting K-J: Argumente für die Deszendenz der Mollusken von metameren Antezedenten. Zool Jb Anat 1980, 103:211-218.
  • [32]Edlinger K: The mechanical constraints in mollusc constructions – the function of the shell, the musculature, and the connective tissue. In Constructional Morphology and Evolution. Edited by Schmidt-Kittler N, Vogel K. Berlin and Heidelberg: Springer-Verlag; 1991:359-374.
  • [33]Balavoine G, Adoutte A: The segmented Urbilateria: A testable scenario. Integr Comp Biol 2003, 43:137-147.
  • [34]Prud’homme B, de Rosa R, Arendt D, Julien J-F, Pajaziti R, Dorresteijn AWC, Adoutte A, Wittbrodt J, Balavoine G: Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation. Curr Biol 2003, 13:1876-1881.
  • [35]Dray N, Tessmar-Raible K, Le Gouar M, Vibert L, Christodoulou F, Schipany K, Guillou A, Zantke J, Snyman H, Béhague J, Vervoort M, Arendt D, Balavoine G: Hedgehog signaling regulates segment formation in the annelid Platynereis. Science 2010, 329:339-342.
  • [36]Hessling R: Metameric organisation of the nervous system in developmental stages of Urechis caupo (Echiura) and its phylogenetic implications. Zoomorphology 2002, 121:221-234.
  • [37]Hessling R: Novel aspects of the nervous system of Bonellia viridis (Echiura) revealed by the combination of immunohistochemistry, confocal laser-scanning microscopy and three-dimensional reconstruction. Hydrobiologia 2003, 496:225-239.
  • [38]Hessling R, Westheide W: Are Echiura derived from a segmented ancestor? immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis. J Morphol 2002, 252:100-113.
  • [39]Struck TH, Schult N, Kusen T, Hickman E, Bleidorn C, McHugh D, Halanych KM: Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evol Biol 2007, 7:1-11. BioMed Central Full Text
  • [40]Struck TH, Paul C, Hill N, Hartmann S, Hösel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G, Bleidorn C: Phylogenomic analyses unravel annelid evolution. Nature 2011, 471:95-98.
  • [41]Kristof A, Wollesen T, Wanninger A: Segmental mode of neural patterning in Sipuncula. Curr Biol 2008, 18:1129-1132.
  • [42]Kristof A, Wollesen T, Maiorova AS, Wanninger A: Cellular and muscular growth patterns during sipunculan development. J Exp Zool (Mol Dev Evol) 2011, 316:227-240.
  • [43]Friedrich S, Wanninger A, Brückner M, Haszprunar G: Neurogenesis in the mossy chiton, Mopalia muscosa (Gould) (Polyplacophora): evidence against molluscan metamerism. J Morphol 2002, 253:109-117.
  • [44]Voronezhskaya EE, Tyurin SA, Nezlin LP: Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J Comp Neurol 2002, 444:25-38.
  • [45]Wanninger A, Haszprunar G: Chiton myogenesis: perspectives for the development and evolution of larval and adult muscle systems in molluscs. J Morphol 2002, 251:103-113.
  • [46]Pruvot G: Sur le développement d’un Solénogastre. Comptes rend hebd séances Acad Sciences 1890, 111:689-692.
  • [47]Pruvot G: Sur l’embryogénie d’une Proneomenia. Comptes rend hebd séances Acad Sciences 1892, 114:1211-1214.
  • [48]Baba K: The later development of a Solenogastre, Epimenia verrucosa (Nierstrasz). J Dept Agric Kyūsyū Imp Univ 1938, 6:21-40.
  • [49]Baba K: The early development of a solenogastre, Epimenia verrucosa (Nierstrasz). Annot Zool Japon 1940, 19:107-113.
  • [50]Baba K: General sketch of the development in a solenogastre, Epimenia verrucosa (Nierstrasz) [in Japanese with English summary]. Misc Rep Res Inst Nat Res 1951, 19–21:38-46.
  • [51]Thompson TE: Development of the aplacophorous mollusc Neomenia carinata Tullberg. Nature 1959, 184:122-123.
  • [52]Thompson TE: The development of Neomenia carinata Tullberg (Mollusca, Aplacophora). Proc R Soc Lond B 1960, 153:263-278.
  • [53]Okusu A: Embryogenesis and development of Epimenia babai (Mollusca, Neomeniomorpha). Biol Bull 2002, 203:87-103.
  • [54]Todt C, Wanninger A: Of tests, trochs, shells, and spicules: Development of the basal mollusk Wirenia argentea (Solenogastres) and its bearing on the evolution of trochozoan larval key features. Front Zool 2010, 7:6. BioMed Central Full Text
  • [55]Odhner NH: Norwegian Solenogastres. Bergens Mus Aarb 1918–19 Naturvid række 1921, 3:1-86.
  • [56]Rothlisberg PC, Pearcy WG: An epibenthic sampler used to study the ontogeny of vertical migration of Pandalus jordani (Decapoda, Caridea). Fishery Bull 1976, 74:994-997.
  • [57]Ratnasingham S, Hebert PDN, BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol Ecol Notes 2007, 7:355-364.
  • [58]McDougall C, Chen W-C, Shimeld SM, Ferrier DEK: The development of the larval nervous system, musculature and ciliary bands of Pomatoceros lamarckii (Annelida): heterochrony in polychaetes. Front Zool 2006, 3:16. BioMed Central Full Text
  • [59]Reynolds ES: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 1963, 17:208-212.
  • [60]Todt C, Büchinger T, Wanninger A: The nervous system of the basal mollusk Wirenia argentea (Solenogastres): a study employing immunocytochemical and 3D reconstruction techniques. Marine Biol Res 2008, 4:290-303.
  • [61]Faller S, Rothe BH, Todt C, Schmidt-Rhaesa A, Loesel R: Comparative neuroanatomy of Caudofoveata, Solenogastres, Polyplacophora, and Scaphopoda (Mollusca) and its phylogenetic implications. Zoomorphology 2012, 131:149-170.
  • [62]Moroz LL, Sudlow LC, Jing J, Gillette R: Serotonin-immunoreactivity in peripheral tissues of the opisthobranch molluscs Pleurobranchaea californica and Tritonia diomedea. J Comp Neurol 1997, 382:176-188.
  • [63]Caunce M, McKenzie JD, Tripp J, Winlow W: Serotonergic innervation of the pedal epidermis of Lymnaea. In Neurobiology of Invertebrates. Edited by Salánki J, S-Rósza K. Budapest: Akadémiai Kiadó; 1988:691-692.
  • [64]McKenzie JD, Caunce M, Hetherington MS, Winlow W: Serotonergic innervation of the foot of the pond snail Lymnaea stagnalis (L.). J Neurocytol 1998, 27:459-471.
  • [65]Faccioni-Heuser MC, Zancan DM, Achaval M: Monoamines in the pedal plexus of the land snail Megalobulimus oblongus (Gastropoda, Pulmonata). Braz J Med Biol Res 2004, 37:1043-1053.
  • [66]Müller MCM, Westheide W: Comparative analysis of the nervous systems in presumptive progenetic dinophilid and dorvilleid polychaetes (Annelida) by immunohistochemistry and cLSM. Acta Zool 2002, 83:33-48.
  • [67]Heath H: Solenogastres from the eastern coast of North America. Mem Mus Comp Zoöl Harvard Coll 1918, 45:183-260.
  • [68]Kempf SC, Page LR, Pires A: Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. J Comp Neurol 1997, 386:507-528.
  • [69]Marois R, Carew TJ: Fine structure of the apical ganglion and its serotonergic cells in the larva of Aplysia californica. Biol Bull 1997, 192:388-398.
  • [70]Dickinson AJG, Nason J, Croll RP: Histochemical localization of FMRFamide, serotonin and catecholamines in embryonic Crepidula fornicata (Gastropoda, Prosobranchia). Zoomorphology 1999, 119:49-62.
  • [71]Page LR, Parries SC: Comparative study of the apical ganglion in planktotrophic caenogastropod larvae: ultrastructure and immunoreactivity to serotonin. J Comp Neurol 2000, 418:383-401.
  • [72]Haszprunar G, Friedrich S, Wanninger A, Ruthensteiner B: Fine structure and immunocytochemistry of a new chemosensory system in the chiton larva (Mollusca: Polyplacophora). J Morphol 2002, 251:210-218.
  • [73]Dickinson AJG, Croll RP, Voronezhskaya EE: Development of embryonic cells containing serotonin, catecholamines, and FMRFamide-related peptides in Aplysia californica. Biol Bull 2000, 199:305-315.
  • [74]Kreiling JA, Jessen-Eller K, Miller J, Seegal RF, Reinisch CL: Early development of the serotonergic and dopaminergic nervous system in Spisula solidissima (surf clam) larvae. Comp Biochem Physiol A 2001, 130:341-351.
  • [75]Dickinson AJG, Croll RP: Development of the larval nervous system of the gastropod Ilyanassa obsoleta. J Comp Neurol 2003, 466:197-218.
  • [76]Wilson EB: The cell-lineage of Nereis. a contribution to the cytogeny of the annelid body. J Morphol 1892, 6:361-480.
  • [77]Anderson DT: The comparative embryology of the Polychaeta. Acta Zool 1966, 47:1-42.
  • [78]Anderson DT: Embryology and Phylogeny in Annelids and Arthropods. Oxford: Pergamon Press; 1973.
  • [79]De Rosa R, Prud’homme B, Balavoine G: Caudal and even-skipped in the annelid Platynereis dumerilii and the ancestry of posterior growth. Evol & Dev 2005, 7:574-587.
  • [80]Seaver EC, Thamm K, Hill SD: Growth patterns during segmentation in the two polychaete annelids, Capitella sp I and Hydroides elegans: comparisons at distinct life history stages. Evol & Dev 2005, 7:312-326.
  • [81]Brinkmann N, Wanninger A: Larval neurogenesis in Sabellaria alveolata reveals plasticity in polychaete neural patterning. Evol & Dev 2008, 10:606-618.
  • [82]Fischer AHL, Henrich T, Arendt D: The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool 2010, 7:31. BioMed Central Full Text
  • [83]Voronezhskaya EE, Tsitrin EB, Nezlin LP: Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae). J Comp Neurol 2003, 455:299-309.
  • [84]Brinkmann N, Wanninger A: Neurogenesis suggests independent evolution of opercula in serpulid polychaetes. BMC Evol Biol 2009, 9:270. BioMed Central Full Text
  • [85]Orrhage L, Müller MCM: Morphology of the nervous system of Polychaeta (Annelida). Hydrobiologia 2005, 535/536:79-111.
  • [86]Müller MCM: Polychaete nervous systems: Ground pattern and variations - cLS microscopy and the importance of novel characteristics in phylogenetic analysis. Integr Comp Biol 2006, 46:125-133.
  • [87]Hay-Schmidt A: The evolution of the serotonergic nervous system. Proc R Soc Lond B 2000, 267:1071-1079.
  • [88]Younossi-Hartenstein A, Hartenstein V: The embryonic development of the polyclad flatworm Imogine mcgrathi. Dev Genes Evol 2000, 210:383-398.
  • [89]Chernyshev AV, Magarlamov TY: The first data on the nervous system of hoplonemertean larvae (Nemertea, Hoplonemertea). Dokl Biol Sciences 2010, 430:48-50.
  • [90]Rawlinson KA: Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits. Front Zool 2010, 7:1-25. BioMed Central Full Text
  • [91]Temereva E, Wanninger A: Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features. BMC Evol Biol 2012, 12:1-27. BioMed Central Full Text
  • [92]Younossi-Hartenstein A, Ehlers U, Hartenstein V: Embryonic development of the nervous system of the rhabdocoel flatworm Mesostoma lingua (Abildgaard, 1789). J Comp Neurol 2000, 416:461-474.
  • [93]Altenburger A, Wanninger A: Neuromuscular development in Novocrania anomala: evidence for the presence of serotonin and a spiralian-like apical organ in lecithotrophic brachiopod larvae. Evol & Dev 2010, 12:16-24.
  • [94]Brinkmann N, Wanninger A: Capitellid connections: contributions from neuromuscular development of the maldanid polychaete Axiothella rubrocincta (Annelida). BMC Evol Biol 2010, 10:168. BioMed Central Full Text
  • [95]Temereva EN: Ventral nerve cord in Phoronopsis harmeri larvae. J Exp Zool (Mol Dev Evol) 2012, 318:26-34.
  • [96]Reisinger E: Die Evolution des Orthogons der Spiralier und das Archicölomatenproblem. Z zool Syst Evolut-forsch 1972, 10:1-43.
  文献评价指标  
  下载次数:4次 浏览次数:11次