期刊论文详细信息
Journal of Diabetes & Metabolic Disorders
Dietary polyphenols as potential nutraceuticals in management of diabetes: a review
Fereidoun Azizi1  Parvin Mirmiran3  Zahra Bahadoran2 
[1] Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24 Parvaneh St, Yemen St, Chamran Exp, 19395-4763 Tehran, Iran;Nutrition and Endocrine Research Center, and Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24 Parvaneh St, Yemen St, Chamran Exp, 19395-4763 Tehran, Iran;Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, No 46 Arghavan-e-gharbi St, Farahzadi Blv, Shahrak-e-Ghods, 19395-4741 Tehran, Iran
关键词: Diabetes complications;    Type 2 diabetes;    Lignans;    Stilbenes;    Flavonoids;    Phenolic acids;    Polyphenols;   
Others  :  806841
DOI  :  10.1186/2251-6581-12-43
 received in 2013-04-09, accepted in 2013-08-07,  发布年份 2013
PDF
【 摘 要 】

In recent years, there is growing evidence that plant-foods polyphenols, due to their biological properties, may be unique nutraceuticals and supplementary treatments for various aspects of type 2 diabetes mellitus. In this article we have reviewed the potential efficacies of polyphenols, including phenolic acids, flavonoids, stilbenes, lignans and polymeric lignans, on metabolic disorders and complications induced by diabetes. Based on several in vitro, animal models and some human studies, dietary plant polyphenols and polyphenol-rich products modulate carbohydrate and lipid metabolism, attenuate hyperglycemia, dyslipidemia and insulin resistance, improve adipose tissue metabolism, and alleviate oxidative stress and stress-sensitive signaling pathways and inflammatory processes. Polyphenolic compounds can also prevent the development of long-term diabetes complications including cardiovascular disease, neuropathy, nephropathy and retinopathy. Further investigations as human clinical studies are needed to obtain the optimum dose and duration of supplementation with polyphenolic compounds in diabetic patients.

【 授权许可】

   
2013 Bahadoran et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708100755582.pdf 306KB PDF download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Santaguida PL, Balion C, Hunt D: Diagnosis, prognosis, and treatment of impaired glucose tolerance and impaired fasting glucose. Evid Rep Technol Assess 2008, 12:1-11.
  • [2]Evans JL, Goldfine ID, Maddux BA, Grodsky GM: Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002, 23:599-622.
  • [3]Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al.: Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003, 52:812-817.
  • [4]Montonen J, Knekt P, Järvinen R, Reunanen A: Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 2004, 27:362-366.
  • [5]Pandey KB, Rizvi SI: Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009, 2:270-278.
  • [6]Bahadoran Z, Golzarand M, Mirmiran P, Saadati N, Azizi F: The association of dietary phytochemical index and cardio-metabolic risk factors in adults: Tehran lipid and glucose study. J Hum Nutr Diet 2013. In print
  • [7]Bahadoran Z, Golzarand M, Mirmiran P, Shiva N, Azizi F: Dietary total antioxidant capacity and the occurrence of metabolic syndrome and its components after a 3-year follow-up in adults: Tehran lipid and glucose study. Nutr Metab (Lond) 2012, 9:70. BioMed Central Full Text
  • [8]Mirmiran P, Bahadoran Z, Golzarand M, Shiva N, Azizi F: Association between dietary phytochemical index and 3-year changes in weight, waist circumference and body adiposity index in adults: Tehran lipid and glucose study. Nutr Metab (Lond) 2012, 9:108. BioMed Central Full Text
  • [9]Mirmiran P, Noori N, Zavareh MB, Azizi F: Fruit and vegetable consumption and risk factors for cardiovascular disease. Metabolism 2009, 58:460-468.
  • [10]Perera PK, Li Y: Functional herbal food ingredients used in type 2 diabetes mellitus. Pharmacogn Rev 2012, 6:37-45.
  • [11]Bahadoran Z, Mirmiran P, Hosseinpanah F, Hedayati M, Hosseinpour-Niazi S, Azizi F: Broccoli sprouts reduce oxidative stress in type 2 diabetes: a randomized double-blind clinical trial. Eur J Clin Nutr 2011, 65:972-977.
  • [12]Bahadoran Z, Mirmiran P, Hosseinpanah F, Asghari G, Rajab A, Azizi F: Broccoli sprouts Powder could improve serum triglyceride and oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Diabetes Res Clin Pract 2012, 96:348-354.
  • [13]Bahadoran Z, Tohidi M, Nazeri P, Mehran M, Azizi F, Mirmiran P: Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: a randomized double-blind clinical trial. Int J Food Sci Nutr 2012, 63:767-771.
  • [14]Beckman CH: Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol 2000, 57:101-110.
  • [15]Pietta P, Minoggio M, Bramati L: Plant polyphenols: structure, occurrence and bioactivity. Stud Nat Pro Chem 2003, 28:257-312.
  • [16]Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L: Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004, 79:727-747.
  • [17]Adlercreutz H: Lignans and human health. Crit Rev Clin Lab Sci 2007, 44:483-525.
  • [18]Chun OK, Chung SJ, Song WO: Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 2007, 137:1244-1252.
  • [19]Ovaskainen ML, Törrönen R, Koponen JM, Sinkko H, Hellström J, Reinivuo H, et al.: Dietary intake and major food sources of polyphenols in Finnish adults. J Nutr 2008, 138:562-566.
  • [20]Scalbert A, Williamson G: Dietary intake and bioavailability of polyphenols. J Nutr 2000, 130:2073S-2085S.
  • [21]Scalbert A, Morand C, Manach C, Rémésy C: Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother 2002, 56:276-282.
  • [22]Han X, Loa T: Dietary polyphenols and their biological significance. Int J Mol Sci 2007, 8:950-988.
  • [23]Dinneen S, Gerich J, Rizza R: Carbohydrate metabolism in non-insulin-dependent diabetes mellitus. N Engl J Med 1992, 327:707-713.
  • [24]Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, et al.: Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010, 11:1365-1402.
  • [25]Iwai K, Kim MY, Onodera A, Matsue H: Alpha-glucosidase inhibitory and antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb. Agric Food Chem 2006, 54:4588-4592.
  • [26]Iwai K: Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A(y) mice. Plant Foods Hum Nutr 2008, 63:163-169.
  • [27]Cabrera C, Artacho R, Giménez R: Beneficial effects of green tea-a review. J Am Coll Nutr 2006, 25:79-99.
  • [28]Tadera K, Minami Y, Takamatsu K, Matsuoka T: Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J Nutr Sci Vitaminol (Tokyo) 2006, 52:149-153.
  • [29]Kobayashi Y, Suzuki M, Satsu H, Arai S, Hara Y, Suzuki K, et al.: Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 2000, 48:5618-5623.
  • [30]Johnston K, Sharp P, Clifford M, Morgan L: Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett 2005, 579:1653-1657.
  • [31]Johnston KL, Clifford MN, Morgan LM: Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 2003, 78:728-733.
  • [32]Dao TM, Waget A, Klopp P, Serino M, Vachoux C, Pechere L, et al.: Resveratrol increases glucose induced GLP-1 secretion in mice: a mechanism which contributes to the glycemic control. PLoS One 2011, 6:e20700.
  • [33]Jung EH, Kim SR, Hwang IK, Ha TY: Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J Agric Food Chem 2007, 55:9800-9804.
  • [34]Jung UJ, Lee MK, Jeong KS, Choi MS: The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr 2004, 134:2499-2503.
  • [35]Jung UJ, Lee MK, Park YB, Kang MA, Choi MS: Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol 2006, 38:1134-1145.
  • [36]Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK: Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 2002, 277:34933-34940.
  • [37]Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W: Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem 2007, 282:30143-30149.
  • [38]Prabhakar PK, Doble M: Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myotubes. Phytomedicine 2009, 16:1119-1126.
  • [39]Zhang B, Kang M, Xie Q, Xu B, Sun C, Chen K, Wu Y: Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation. J Agric Food Chem 2011, 59:537-545.
  • [40]Park CE, Kim MJ, Lee JH, Min BI, Bae H, Choe W, et al.: Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Mol Med 2007, 39:222-229.
  • [41]Towler MC, Hardie DG: AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 2007, 100:328-341.
  • [42]Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al.: Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001, 108:1167-1174.
  • [43]Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, et al.: Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 2006, 55:2180-2191.
  • [44]Kumar R, Balaji S, Uma TS, Sehgal PK: Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K. J Ethnopharmacol 2009, 126:533-537.
  • [45]Fu Z, Liu D: Long-term exposure to genistein improves insulin secretory function of pancreatic beta-cells. Eur J Pharmacol 2009, 616:321-327.
  • [46]Liu D, Zhen W, Yang Z, Carter JD, Si H, Reynolds KA: Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a cAMP-dependent protein kinase pathway. Diabetes 2006, 55:1043-1050.
  • [47]Fu Z, Zhang W, Zhen W, Lum H, Nadler J, Bassaganya-Riera J: Genistein induces pancreatic beta-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology 2010, 151:3026-3037.
  • [48]Kajimoto Y, Kaneto H: Role of oxidative stress in pancreatic beta-cell dysfunction. Ann NY Acad Sci 2004, 1011:168-176.
  • [49]Drews G, Krippeit-Drews P, Düfer M: Oxidative stress and beta-cell dysfunction. Pflugers Arch 2010, 460:703-718.
  • [50]Yin P, Zhao S, Chen S, Liu J, Shi L, Wang X, Liu Y, Ma C: Hypoglycemic and hypolipidemic effects of polyphenols from burs of Castanea mollissima Blume. Molecules 2011, 16:9764-9774.
  • [51]Szkudelski T, Szkudelska K: Anti-diabetic effects of resveratrol. Ann NY Acad Sci 2011, 1215:34-39.
  • [52]Szkudelski T: Resveratrol inhibits insulin secretion from rat pancreatic islets. Eur J Pharmacol 2006, 552:176-181.
  • [53]Kalofoutis C, Piperi C, Kalofoutis A, Harris F, Phoenix D, Singh J: Type II diabetes mellitus and cardiovascular risk factors: Current therapeutic approaches. Exp Clin Cardiol 2007, 12:17-28.
  • [54]Thomas JE, Foody JM: The pathophysiology of cardiovascular disease in diabetes mellitus and the future of therapy. J Cardiometab Syndr 2007, 2:108-113.
  • [55]Lecour S, Lamont KT: Natural polyphenols and cardioprotection. Mini Rev Med Chem 2011, 11:1191-1199.
  • [56]Schini-Kerth VB, Auger C, Etienne-Selloum N, Chataigneau T: Polyphenol-induced endothelium-dependent relaxations role of NO and EDHF. Adv Pharmacol 2010, 60:133-175.
  • [57]Stoclet JC, Chataigneau T, Ndiaye M, Oak MH, El Bedoui J, Chataigneau M, et al.: Vascular protection by dietary polyphenols. Eur J Pharmacol 2004, 500:299-313.
  • [58]Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T, et al.: Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J Agric Food Chem 2007, 55:4604-4609.
  • [59]Vidal R, Hernandez-Vallejo S, Pauquai T, Texier O, Rousset M, Chambaz J, et al.: Apple procyanidins decrease cholesterol esterification and lipoprotein secretion in Caco-2/TC7 enterocytes. J Lipid Res 2005, 46:258-268.
  • [60]Koo SI, Noh SK: Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem 2007, 18:179-183.
  • [61]Seymour EM, Singer AA, Kirakosyan A, Urcuyo-Llanes DE, Kaufman PB, Bolling SF: Altered hyperlipidemia, hepatic steatosis, and hepatic peroxisome proliferator-activated receptors in rats with intake of tart cherry. J Med Food 2008, 11:252-259.
  • [62]Oak MH, Chataigneau M, Keravis T, Chataigneau T, Beretz A, Andriantsitohaina R, et al.: Red wine polyphenolic compounds inhibit vascular endothelial growth factor expression in vascular smooth muscle cells by preventing the activation of the p38 mitogen-activated protein kinase pathway. Arterioscler Thromb Vasc Biol 2003, 23:1001-1007.
  • [63]Oak MH, El Bedoui J, Schini-Kerth VB: Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem 2005, 16:1-8.
  • [64]Ndiaye M, Chataigneau T, Chataigneau M, Schini-Kerth VB: Red wine polyphenols induce EDHF-mediated relaxations in porcine coronary arteries through the redox-sensitive activation of the PI3-kinase/Akt pathway. Br J Pharmacol 2004, 142:1131-1136.
  • [65]Wang L, Zhu LH, Jiang H, Tang QZ, Yan L, Wang D, et al.: Grape seed proanthocyanidins attenuate vascular smooth muscle cell proliferation via blocking phosphatidylinositol 3-kinase-dependent signaling pathways. J Cell Physiol 2010, 223:713-726.
  • [66]de Pascual-Teresa S, Moreno DA, García-Viguera C: Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 2010, 11:1679-1703.
  • [67]Nogueira Lde P, Knibel MP, Torres MR, Nogueira Neto JF, Sanjuliani AF: Consumption of high-polyphenol dark chocolate improves endothelial function in individuals with stage 1 hypertension and excess body weight. Int J Hypertens 2012, 2012:147321.
  • [68]Mellor DD, Madden LA, Smith KA, Kilpatrick ES, Atkin SL: High-polyphenol chocolate reduces endothelial dysfunction and oxidative stress during acute transient hyperglycaemia in Type 2 diabetes: a pilot randomized controlled trial. Diabet Med 2012, 30:478-483.
  • [69]Kar P, Laight D, Rooprai HK, Shaw KM, Cummings M: Effects of grape seed extract in Type 2 diabetic subjects at high cardiovascular risk: a double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med 2009, 26:526-531.
  • [70]Shidfar F, Heydari I, Hajimiresmaiel SJ, Hosseini S, Shidfar S, Amiri F: The effects of cranberry juice on serum glucose, apoB, apoA-I, Lp(a), and Paraoxonase-1 activity in type 2 diabetic male patients. J Res Med Sci 2012, 17:355-360.
  • [71]Hubbard GP, Wolffram S, Lovegrove JA, Gibbins JM: Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J Thromb Haemost 2004, 2:2138-2145.
  • [72]Cheng M, Gao HQ, Xu L, Li BY, Zhang H, Li XH: Cardioprotective effects of grape seed proanthocyanidins extracts in streptozocin induced diabetic rats. J Cardiovasc Pharmacol 2007, 50:503-509.
  • [73]Rizza S, Muniyappa R, Iantorno M, Kim JA, Chen H, Pullikotil P, et al.: Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab 2011, 96:E782-E792.
  • [74]Howes JB, Tran D, Brillante D, Howes LG: Effects of dietary supplementation with isoflavones from red clover on ambulatory blood pressure and endothelial function in postmenopausal type 2 diabetes. Diabetes Obes Metab 2003, 5:325-332.
  • [75]Goycheva V, Gadjeva BP: Oxidative stress and its complications in diabetes mellitus. Trakia J of Sci 2006, 4:1-8.
  • [76]Pérez-Matute P, Zulet MA, Martínez JA: Reactive species and diabetes: counteracting oxidative stress to improve health. Curr Opin Pharmacol 2009, 9:771-779.
  • [77]Dembinska-Kiec A, Mykkänen O, Kiec-Wilk B, Mykkänen H: Antioxidant phytochemicals against type 2 diabetes. Br J Nutr 2008, 99:ES109-ES117.
  • [78]Scalbert A, Johnson IT, Saltmarsh M: Polyphenols: antioxidants and beyond. Am J Clin Nutr 2005, 81:215S-217S.
  • [79]Crespy V, Williamson G: A review of the health effects of green tea catechins in in vivo animal models. J Nutr 2004, 134:3431S-3440S.
  • [80]Guilherme A, Virbasius JV, Puri V, Czech MP: Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008, 9:367-377.
  • [81]Nakazato K, Song H, Waga T: Effects of dietary apple polyphenol on adipose tissues weights in Wistar rats. Exp Anim 2006, 55:383-389.
  • [82]Osada K, Suzuki T, Kawakami Y, Senda M, Kasai A, Sami M, et al.: Dose-dependent hypocholesterolemic actions of dietary apple polyphenol in rats fed cholesterol. Lipids 2006, 41:133-139.
  • [83]Tsuda T, Horio F, Uchida K, Aoki H, Osawa T: Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 2003, 133:2125-2130.
  • [84]Tsuda T, Ueno Y, Yoshikawa T, Kojo H, Osawa T: Microarray profiling of gene expression in human adipocytes in response to anthocyanins. Biochem Pharmacol 2006, 71:1184-1197.
  • [85]Ghosh D, Konishi T: Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 2007, 16:200-208.
  • [86]Li J, Lim SS, Lee JY, Kim JK, Kang SW, Kim JL, et al.: Purple corn anthocyanins dampened high-glucose-induced mesangial fibrosis and inflammation: possible renoprotective role in diabetic nephropathy. J Nutr Biochem 2012, 23:320-331.
  • [87]Li BY, Cheng M, Gao HQ, Ma YB, Xu L, Li XH, et al.: Back-regulation of six oxidative stress proteins with grape seed proanthocyanidin extracts in rat diabetic nephropathy. J Cell Biochem 2008, 104:668-679.
  • [88]Cui XP, Li BY, Gao HQ, Wei N, Wang WL, Lu M: Effects of grape seed proanthocyanidin extracts on peripheral nerves in streptozocin-induced diabetic rats. J Nutr Sci Vitaminol (Tokyo) 2008, 54:321-328.
  • [89]Bhutada P, Mundhada Y, Bansod K, Bhutada C, Tawari S, Dixit P, et al.: Ameliorative effect of quercetin on memory dysfunction in streptozotocin-induced diabetic rats. Neurobiol Learn Mem 2010, 94:293-302.
  • [90]Rhee SJ, Choi JH, Park MR: Green tea catechin improves microsomal phospholipase A2 activity and the arachidonic acid cascade system in the kidney of diabetic rats. Asia Pac J Clin Nutr 2002, 11:226-231.
  文献评价指标  
  下载次数:18次 浏览次数:22次