期刊论文详细信息
Journal of Neuroinflammation
Functional differences between microglia and monocytes after ischemic stroke
Louise D. McCullough1  Evan R. Jellison2  Rajkumar Verma1  Joshua Crapser1  Jeremy M. Grenier1  Anita R. Patel1  Rodney M. Ritzel1 
[1] Department of Neurology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington 06030, CT, USA;Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
关键词: Phagocytosis;    Inflammation;    Stroke;    Monocytes;    Microglia;   
Others  :  1221970
DOI  :  10.1186/s12974-015-0329-1
 received in 2015-03-03, accepted in 2015-05-20,  发布年份 2015
PDF
【 摘 要 】

Background

The brain’s initial innate response to stroke is primarily mediated by microglia, the resident macrophage of the CNS. However, as early as 4 h after stroke, the blood–brain barrier is compromised and monocyte infiltration occurs. The lack of discriminating markers between these two myeloid populations has led many studies to generate conclusions based on the grouping of these two populations. A growing body of evidence now supports the distinct roles played by microglia and monocytes in many disease models.

Methods

Using a flow cytometry approach, combined with ex-vivo functional assays, we were able to distinguish microglia from monocytes using the relative expression of CD45 and assess the function of each cell type following stroke over the course of 7 days.

Results

We found that at 72 h after a 90-min middle cerebral artery occlusion (MCAO), microglia populations decrease whereas monocytes significantly increase in the stroke brain compared to sham. After stroke, BRDU incorporation into monocytes in the bone marrow increased. After recruitment to the ischemic brain, these monocytes accounted for nearly all BRDU-positive macrophages. Inflammatory activity peaked at 72 h. Microglia produced relatively higher reactive oxygen species and TNF, whereas monocytes were the predominant IL-1β producer. Although microglia showed enhanced phagocytic activity after stroke, monocytes had significantly higher phagocytic capacity at 72 h. Interestingly, we found a positive correlation between TNF expression levels and phagocytic activity of microglia after stroke.

Conclusions

In summary, the resident microglia population is vulnerable to the effects of severe ischemia, show compromised cell cycle progression, and adopt a largely pro-inflammatory phenotype after stroke. Infiltrating monocytes are primarily involved with early debris clearance of dying cells. These findings suggest that the early wave of infiltrating monocytes may be beneficial to stroke repair and future therapies aimed at mitigating microglia cell death may prove more effective than attempting to elicit targeted anti-inflammatory responses from damaged cells.

【 授权许可】

   
2015 Ritzel et al.

【 预 览 】
附件列表
Files Size Format View
20150804130843714.pdf 2378KB PDF download
Fig. 5. 36KB Image download
Fig. 4. 48KB Image download
Fig. 3. 53KB Image download
Fig. 2. 65KB Image download
Fig. 1. 67KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Whiteley W, Jackson C, Lewis S, Lowe G, Rumley A, Sandercock P, et al. Inflammatory markers and poor outcome after stroke: a prospective cohort study and systematic review of interleukin-6. PLoS Med. 2009;6. e1000145.
  • [2]Di Napoli M, Papa F, Bocola V: C-reactive protein in ischemic stroke: an independent prognostic factor. Stroke 2001, 32:917-24.
  • [3]Vila N, Castillo J, Davalos A, Esteve A, Planas AM, Chamorro A: Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke 2003, 34:671-5.
  • [4]Vila N, Castillo J, Davalos A, Chamorro A: Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke 2000, 31:2325-9.
  • [5]Benakis C, Garcia-Bonilla L, Iadecola C, Anrather J: The role of microglia and myeloid immune cells in acute cerebral ischemia. Front Cell Neurosci 2014, 8:461.
  • [6]Joseph B, Venero JL: A brief overview of multitalented microglia. Methods Mol Biol 2013, 1041:3-8.
  • [7]Patel AR, Ritzel R, McCullough LD, Liu F: Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 2013, 5:73-90.
  • [8]London A, Cohen M, Schwartz M: Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 2013, 7:34.
  • [9]Prinz M, Priller J, Sisodia SS, Ransohoff RM: Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 2011, 14:1227-35.
  • [10]Mildner A, Schlevogt B, Kierdorf K, Bottcher C, Erny D, Kummer MP, et al.: Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J Neurosci 2011, 31:11159-71.
  • [11]Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, et al.: Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 2014, 211:1533-49.
  • [12]Tang XN, Zheng Z, Yenari MA: Bone marrow chimeras in the study of experimental stroke. Transl Stroke Res 2012, 3:341-7.
  • [13]McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD: Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab 2005, 25:502-12.
  • [14]Voss EV, Skuljec J, Gudi V, Skripuletz T, Pul R, Trebst C, et al.: Characterisation of microglia during de- and remyelination: can they create a repair promoting environment? Neurobiol Dis 2012, 45:519-28.
  • [15]Pul R, Chittappen KP, Stangel M: Quantification of microglial phagocytosis by a flow cytometer-based assay. Methods Mol Biol 2013, 1041:121-7.
  • [16]Schaefer BC, Schaefer ML, Kappler JW, Marrack P, Kedl RM: Observation of antigen-dependent CD8+ T-cell/ dendritic cell interactions in vivo. Cell Immunol 2001, 214:110-22.
  • [17]Denes A, McColl BW, Leow-Dyke SF, Chapman KZ, Humphreys NE, Grencis RK, et al.: Experimental stroke-induced changes in the bone marrow reveal complex regulation of leukocyte responses. J Cereb Blood Flow Metab 2011, 31:1036-50.
  • [18]Chan PH: Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 2001, 21:2-14.
  • [19]Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, et al.: Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci U S A 2012, 109:18150-5.
  • [20]Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, et al.: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 2007, 10:1544-53.
  • [21]Chiba T, Umegaki K: Pivotal roles of monocytes/macrophages in stroke. Mediators Inflamm 2013, 2013:759103.
  • [22]Womble TA, Green S, Shahaduzzaman M, Grieco J, Sanberg PR, Pennypacker KR, et al.: Monocytes are essential for the neuroprotective effect of human cord blood cells following middle cerebral artery occlusion in rat. Mol Cell Neurosci 2014, 59:76-84.
  • [23]Schilling M, Strecker JK, Ringelstein EB, Schabitz WR, Kiefer R: The role of CC chemokine receptor 2 on microglia activation and blood-borne cell recruitment after transient focal cerebral ischemia in mice. Brain Res 2009, 1289:79-84.
  • [24]Faustino JV, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF, et al.: Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci 2011, 31:12992-3001.
  • [25]Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J: Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 2007, 27:2596-605.
  • [26]Schuette-Nuetgen K, Strecker JK, Minnerup J, Ringelstein EB, Schilling M: MCP-1/CCR-2-double-deficiency severely impairs the migration of hematogenous inflammatory cells following transient cerebral ischemia in mice. Exp Neurol 2012, 233:849-58.
  • [27]Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C: Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 2002, 22:308-17.
  • [28]Ponomarev ED, Shriver LP, Maresz K, Dittel BN: Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 2005, 81:374-89.
  • [29]Carson MJ, Bilousova TV, Puntambekar SS, Melchior B, Doose JM, Ethell IM: A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics 2007, 4:571-9.
  • [30]Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al.: Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 2014, 17:131-43.
  • [31]Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al.: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841-5.
  • [32]Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al.: Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013, 38:792-804.
  • [33]Getts DR, Terry RL, Getts MT, Muller M, Rana S, Shrestha B, et al.: Ly6c + “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med 2008, 205:2319-37.
  • [34]Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, et al.: Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 2009, 12:1361-3.
  • [35]Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, et al.: Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 2012, 484:105-9.
  • [36]Chouery E, Delague V, Bergougnoux A, Koussa S, Serre JL, Megarbane A: Mutations in TREM2 lead to pure early-onset dementia without bone cysts. Hum Mutat 2008, 29:E194-204.
  • [37]Neumann H, Takahashi K: Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 2007, 184:92-9.
  • [38]Bohacek I, Cordeau P, Lalancette-Hebert M, Gorup D, Weng YC, Gajovic S, et al.: Toll-like receptor 2 deficiency leads to delayed exacerbation of ischemic injury. J Neuroinflammation 2012, 9:191. BioMed Central Full Text
  • [39]Jin R, Yang G, Li G: Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010, 87:779-89.
  • [40]Baba T, Kameda M, Yasuhara T, Morimoto T, Kondo A, Shingo T, et al.: Electrical stimulation of the cerebral cortex exerts antiapoptotic, angiogenic, and anti-inflammatory effects in ischemic stroke rats through phosphoinositide 3-kinase/Akt signaling pathway. Stroke 2009, 40:e598-605.
  • [41]Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA, et al.: Proliferating resident microglia after focal cerebral ischaemia in mice. J Cereb Blood Flow Metab 2007, 27:1941-53.
  • [42]Sugawara T, Lewen A, Noshita N, Gasche Y, Chan PH: Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats. J Neurotrauma 2002, 19:85-98.
  • [43]Yenari MA, Giffard RG: Ischemic vulnerability of primary murine microglial cultures. Neurosci Lett 2001, 298:5-8.
  • [44]Panickar KS, Norenberg MD: Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 2005, 50:287-98.
  • [45]Dewar D, Underhill SM, Goldberg MP: Oligodendrocytes and ischemic brain injury. J Cereb Blood Flow Metab 2003, 23:263-74.
  • [46]Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, et al.: Ischemic stroke activates hematopoietic bone marrow stem cells. Circ Res 2015, 116:407-17.
  • [47]Zhang Q, Chen C, Lu J, Xie M, Pan D, Luo X, et al.: Cell cycle inhibition attenuates microglial proliferation and production of IL-1beta, MIP-1alpha, and NO after focal cerebral ischemia in the rat. Glia 2009, 57:908-20.
  • [48]Ishimura R, Martin GR, Ackerman SL: Loss of apoptosis-inducing factor results in cell-type-specific neurogenesis defects. J Neurosci 2008, 28:4938-48.
  • [49]Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R: Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 2003, 183:25-33.
  • [50]Li T, Pang S, Yu Y, Wu X, Guo J, Zhang S: Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain 2013, 136:3578-88.
  • [51]Rose S, Misharin A, Perlman H: A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry A 2012, 81:343-50.
  • [52]Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, et al.: Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 2012, 122:3063-87.
  • [53]Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, et al.: Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1998, 18:196-205.
  • [54]Manzanero S, Santro T, Arumugam TV: Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem Int 2013, 62:712-8.
  • [55]Tang XN, Zheng Z, Giffard RG, Yenari MA: Significance of marrow-derived nicotinamide adenine dinucleotide phosphate oxidase in experimental ischemic stroke. Ann Neurol 2011, 70:606-15.
  • [56]Lambertsen KL, Biber K, Finsen B: Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 2012, 32:1677-98.
  • [57]Moskowitz MA, Lo EH, Iadecola C: The science of stroke: mechanisms in search of treatments. Neuron 2010, 67:181-98.
  • [58]Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, Finsen B: Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 2008, 5:46. BioMed Central Full Text
  • [59]Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, et al.: Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 2012, 18:911-7.
  • [60]Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I: Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 2007, 115:1599-608.
  • [61]Sumbria RK, Boado RJ, Pardridge WM: Brain protection from stroke with intravenous TNFalpha decoy receptor-Trojan horse fusion protein. J Cereb Blood Flow Metab 2012, 32:1933-8.
  • [62]Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD: Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab 2009, 29:534-44.
  • [63]Zhang N, Zhang X, Liu X, Wang H, Xue J, Yu J, et al.: Chrysophanol inhibits NALP3 inflammasome activation and ameliorates cerebral ischemia/reperfusion in mice. Mediators Inflamm 2014, 2014:370530.
  • [64]Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, Migita M, et al.: Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 2003, 117:531-9.
  • [65]Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al.: Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 2012, 43:3063-70.
  • [66]Woo MS, Wang X, Faustino JV, Derugin N, Wendland MF, Zhou P, et al.: Genetic deletion of CD36 enhances injury after acute neonatal stroke. Ann Neurol 2012, 72:961-70.
  • [67]Fang H, Chen J, Lin S, Wang P, Wang Y, Xiong X, et al.: CD36-mediated hematoma absorption following intracerebral hemorrhage: negative regulation by TLR4 signaling. J Immunol 2014, 192:5984-92.
  • [68]Rausch M, Sauter A, Frohlich J, Neubacher U, Radu EW, Rudin M: Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn Reson Med 2001, 46:1018-22.
  • [69]Schilling M, Besselmann M, Muller M, Strecker JK, Ringelstein EB, Kiefer R: Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 2005, 196:290-7.
  • [70]Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K: Development of monocytes, macrophages, and dendritic cells. Science 2010, 327:656-61.
  • [71]Hammond MD, Taylor RA, Mullen MT, Ai Y, Aguila HL, Mack M, et al.: CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci 2014, 34:3901-9.
  • [72]Mallat M, Marin-Teva JL, Cheret C: Phagocytosis in the developing CNS: more than clearing the corpses. Curr Opin Neurobiol 2005, 15:101-7.
  • [73]Lauber K, Blumenthal SG, Waibel M, Wesselborg S: Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 2004, 14:277-87.
  • [74]Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al.: Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014, 41:14-20.
  文献评价指标  
  下载次数:28次 浏览次数:16次