期刊论文详细信息
Journal of Environmental Health Science Engineering
A model based on equations of kinetics to study nitrogen dioxide behavior within a plasma discharge reactor
Zahra Hassani2  Fahimeh Shojaei1  Alireza Ganjovi1  Mehdi Abedi-Varaki3 
[1] Photonics Research Institute, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran;Department of New Materials, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran;Department of Plasma Engineering, Graduate University of Advanced Technology, Kerman, Iran
关键词: Plasma reactor;    Dielectric barrier discharge;    Non-thermal plasma;   
Others  :  1229113
DOI  :  10.1186/s40201-015-0228-5
 received in 2014-09-28, accepted in 2015-10-04,  发布年份 2015
PDF
【 摘 要 】

In this work, a zero-dimensional kinetics model is used to study the temporal behavior of different species such as charged particles, radicals and excited states inside a Dielectric Barrier Discharge plasma reactor. It is shown that, the reactor significantly reduces the concentration of nitrogen monoxide as an environmental pollutant. After a drastic increase, a decrease in the concentration of the NO 2molecules inside the reactor is seen. Nitrogen monoxide molecules with a very low concentration are produced inside the reactor and its quick conversion to other products is proved. The obtained results are compared with the existing experimental and simulation findings, whenever possible.

【 授权许可】

   
2015 Abedi-Varaki et al.

【 预 览 】
附件列表
Files Size Format View
20151022092113470.pdf 1064KB PDF download
Fig. 9. 20KB Image download
Fig. 8. 15KB Image download
Fig. 7. 15KB Image download
Fig. 6. 17KB Image download
Fig. 5. 17KB Image download
Fig. 4. 18KB Image download
Fig. 3. 18KB Image download
Fig. 2. 24KB Image download
Fig. 1. 18KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

【 参考文献 】
  • [1]Balogh RM, Ionel I, Stepan D, Rabl HP, Pfaffinger A. NOx reduction using Selective Catalytic Reduction (SCR) system – α variation test. Termotehnica. 2011; 2:38-42.
  • [2]Yoshida K, Rajanikanth BS, Okubo M. No x reduction and desorption studies under electric discharge plasma using a simulated gas mixture: a case study on the effect of corona electrodes. Plasma Technology and Science. 2009; 11:327-33.
  • [3]Marland G, Boden TA, Griffin RC, Huang SF, Kanciruk P, Nelson TR. Estimates of CO2 emissions from fossil fuel burning and cement manufacturing. 1989.
  • [4]Krupa A, Jaworek A, Czech T. B-corona generated plasma for decomposition of NO 2 in oxygen-free N 2: NO 2 gas mixture. 6th Int Conf Electrostatic Precipitation, Budapest. 1996; 2:511-6.
  • [5]Wang XQ, Chen W, Guo QP, Li Y, Lv GH, Sun XP et al.. Characteristics of NO x removal combining dielectric barrier discharge plasma with selective catalytic reduction by C 2 H 5 OH. J Appl Phys. 2009; 106:013309-5.
  • [6]Rosocha LA, Anderson GK, Bechtold LA, Coogan JJ, Heck HG, Kang M et al.. Treatment of hazardous organic wastes using silent discharge plasmas. Non-thermal plasma for pollution control. 1993; 34:281-308.
  • [7]Gentile AC, Kushner MJ. Reaction chemistry and optimization of plasma remediation of N x O y from gas streams. J Appl Phys. 1995; 78:2074-985.
  • [8]Klein M, Branston DW, Lins G, Romheld M, Seebock R. NO x -decomposition in air using dielectric barrier discharges. Proc 11th Int Conf on Gas Discharges and their Applications. 1995; 2:414-7.
  • [9]Baeva M, Dogan A, Ehlbeck J, Pott A, Uhlenbusch J. CARS diagnostic and modeling of a dielectric barrier discharge. Plasma Chem Plasma Process. 1999; 19:445-66.
  • [10]Hatakeyama K, Tanabe S, Hayashi Y, Matsumoto H. NOx-decomposition by discharge plasma reactor. J Adv Sci. 2001; 13:459-62.
  • [11]Mei-Xiang P, He L, W-Feng S, Zhen H. Simultaneous catalytic removal of NO x and Diesel PM over La 0.9 K 0.1 CoO 3 catalyst assisted by plasma. J Env Sci. 2005; 17:220-3.
  • [12]Yamamoto T, Yang CL, Beltran MR, Kravets Z. Plasma-assisted chemical process for NO x control. IEEE Industry Application Society. 2000; 36:923-7.
  • [13]Dorai R, Hassouni K, Kushner MJ. Interactions between soot particles and during dielectric barrier discharge plasma remediation of simulated diesel exhaust. J Appl. 2000; 88:6060-71.
  • [14]Fujii K, Higashi M, Suzuki N. Simultaneous removal of NO x , CO x , SO x and soot in diesel engine exhaust. NA TO ASI Series, part B, Non, Thermal plasma Techniques for pollution Control, (Ed by BM penetrante and SE Schultheis), Springer- Verlag, Berlin, Heidelberg. 1993; 34:257-79.
  • [15]Wang Q, Shi H, Yan B, Jin Y, Cheng Y. Steam enhanced carbon dioxide reforming of methane in DBD. Int J Hydrog Energy. 2011; 36:8301-6.
  • [16]Raizer YP. Gas discharge physics. Springer-Verlag, ISBN 3-540-19462-2, Moscow; 1987.
  • [17]Nienhuisa GJ, Goedheer WJ, Hamers EAG, Vansark WGJHM, Bezemer J. A self-consistent fluid model for radio-frequency discharges in compared to SiH 4 -H 2 experiments. J Appl Phys. 1997; 82:2060-9.
  • [18]Zastawny A. Standardization of gas amplification description in proportional counters. Silesian technical University, Institute of Physics, 44–100 Gliwice, ul Krzywoustego 2, Poland. 1997; A 385:239-42.
  • [19]Sen SN, Das RP. Effect of Magnetic Field on Primary Ionization by Electron Collision. Pro Indian Natl Sci Acad. 1973;39 A:448–457.
  • [20]Ramamurthi B, Economou DJ. Pulsed plasma reactors: two-dimensional electropositive discharge simulation in a GEC reference cell, plasma sources. Technol. 2002; 11:324-32.
  • [21]Ramamurthi B, Economou DJ. Two-dimensional pulsed-plasma simulation of a chlorine discharge. J Vac Sci Technol A. 2001; 20:467-78.
  • [22]Onda K, Kusunoki H, Ito K, Ibaraki H, Araki T. Numerical simulation of De-NO x performance by repetitive pulsed discharge when added with hydrocarbons such as Ethylene. J Appl Phys. 2005; 97:023301-8.
  文献评价指标  
  下载次数:204次 浏览次数:29次