Journal of Translational Medicine | |
Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor | |
Mark E Dudley1  Steven A Rosenberg1  Maria R Parkhurst1  Laura Devillier1  Robert PT Somerville1  | |
[1] Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA | |
关键词: Adoptive Immunotherapy; T Cell Receptors; Tumor Immunity; T Cells; Human; | |
Others : 1206012 DOI : 10.1186/1479-5876-10-69 |
|
received in 2011-11-08, accepted in 2012-04-04, 发布年份 2012 | |
【 摘 要 】
Background
To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes.
Methods
We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols.
Results
TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype.
Conclusions
The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols.
【 授权许可】
2012 Somerville et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150526114703817.pdf | 998KB | download | |
Figure 5. | 31KB | Image | download |
Figure 4. | 22KB | Image | download |
Figure 3. | 74KB | Image | download |
Figure 2. | 41KB | Image | download |
Figure 1. | 40KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, et al.: Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009, 27:6199-6206.
- [2]Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, et al.: Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol 2000, 18:158-166.
- [3]Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al.: High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999, 17:2105-2116.
- [4]Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al.: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010, 363:711-723.
- [5]Atkins MB, Kunkel L, Sznol M, Rosenberg SA: High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am 2000, 6(Suppl 1):S11-S14.
- [6]Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al.: Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010, 363:809-819.
- [7]Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME: Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008, 8:299-308.
- [8]Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA: Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 2003, 26:332-342.
- [9]Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, et al.: CD8+ enriched "young" tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 2010, 16:6122-6131.
- [10]Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al.: Durable Complete Responses in Heavily Pretreted Patients with Metastatic Melanoma Using T Cell Transfer Immunotherapy. Clin Cancer Res 2011, 13:4550-7.
- [11]Morgan RA, Dudley ME, Rosenberg SA: Adoptive cell therapy: genetic modification to redirect effector cell specificity. Cancer J 2010, 16:336-341.
- [12]Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al.: Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011, 29:917-924.
- [13]Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al.: Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010, 116:4099-4102.
- [14]Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, et al.: T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011, 19:620-626.
- [15]Prieto PA, Durflinger KH, Wunderlich JR, Rosenberg SA, Dudley ME: Enrichment of CD8+ cells from melanoma tumor-infiltrating lymphocyte cultures reveals tumor reactivity for use in adoptive cell therapy. J Immunother 2010, 33:547-556.
- [16]Tran CA: Manufacturing of large numbers of patient-specific T cells for adoptive immunotherapy: an approach to improving product safety, composition, and production capacity. 2007.
- [17]Tran KQ: Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. 2008.
- [18]Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al.: Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009, 114:535-546.
- [19]Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al.: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006, 314:126-129.
- [20]Carswell KS, Papoutsakis ET: Culture of human T cells in stirred bioreactors for cellular immunotherapy applications: shear, proliferation, and the IL-2 receptor. Biotechnol Bioeng 2000, 68:328-338.
- [21]Hami LS, Green C, Leshinsky N, Markham E, Miller K, Craig S: GMP production and testing of Xcellerated T Cells for the treatment of patients with CLL. Cytotherapy 2004, 6:554-562.
- [22]Levine BL: T lymphocyte engineering ex vivo for cancer and infectious disease. Expert Opin Biol Ther 2008, 8:475-489.
- [23]Klapper JA, Thomasian AA, Smith DM, Gorgas GC, Wunderlich JR, Smith FO, et al.: Single-pass, closed-system rapid expansion of lymphocyte cultures for adoptive cell therapy. J Immunol Methods 2009, 345:90-99.
- [24]Sadeghi A, Pauler L, Anneren C, Friberg A, Brandhorst D, Korsgren O, et al.: Large-scale bioreactor expansion of tumor-infiltrating lymphocytes. J Immunol Methods 2011, 364:94-100.
- [25]Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O, Taylor C, et al.: Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 2009, 32:169-180.
- [26]Eibl R, Eibl D: Application of Disposable Bag-Bioreactors in Tissue Engineering and for the Production of Therapeutic Agents. Adv Biochem Eng Biotechnol 2009, 112:183-207.
- [27]Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, et al.: Clinical Responses in a Phase II Study Using Adoptive Transfer of Short-term Cultured Tumor Infiltration Lymphocytes in Metastatic Melanoma Patients. Clin Cancer Res 2010, 16:2646-2655.
- [28]Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, et al.: Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 2005, 115:1616-1626.
- [29]Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, et al.: Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 2005, 102:9571-9576.
- [30]Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al.: Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005, 202:907-912.
- [31]Murhammer DW, Goochee CF: Sparged animal cell bioreactors: mechanism of cell damage and Pluronic F-68 protection. Biotechnol Prog 1990, 6:391-397.
- [32]Bacchetta R, Gregori S, Barbarella L, Roncarolo MG: Cell therapy with human T regulatory type 1 cells in allogeneic transplantations. Immunotherapy 2011, 3:27.
- [33]Filippi C, Bresson D, von Herrath M: von HM: Antigen-specific induction of regulatory T cells for type 1 diabetes therapy. Int Rev Immunol 2005, 24:341-360.
- [34]Vera JF, Brenner LJ, Gerdemann U, Ngo MC, Sili U, Liu H, et al.: Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother 2010, 33:305-315.