期刊论文详细信息
Journal of Neuroinflammation
Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice
Fredrik Clausen1  Lars Hillered1  Lennart Lindbom2  Anna Erlandsson1  Ellinor Kenne2 
[1] Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden;Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
关键词: mouse.;    neutrophil-depletion;    microglia;    cell death;    blood-brain-barrier;    neuroprotection;    controlled cortical impact;    brain edema;    traumatic brain injury;    Neutrophil;   
Others  :  1212852
DOI  :  10.1186/1742-2094-9-17
 received in 2011-09-23, accepted in 2012-01-23,  发布年份 2012
PDF
【 摘 要 】

Background

Brain edema as a result of secondary injury following traumatic brain injury (TBI) is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear.

Methods

In this study we used controlled cortical impact (CCI) as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI). Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data.

Results

Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury.

Conclusion

Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

【 授权许可】

   
2012 Kenne et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614105411852.pdf 2956KB PDF download
Figure 6. 86KB Image download
Figure 5. 79KB Image download
Figure 4. 46KB Image download
Figure 3. 38KB Image download
Figure 2. 62KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Unterberg AW, Stover J, Kress B, Kiening KL: Edema and brain trauma. Neuroscience 2004, 129:1021-1029.
  • [2]Schmidt OI, Heyde CE, Ertel W, Stahel PF: Closed head injury--an inflammatory disease? Brain Res Brain Res Rev 2005, 48:388-399.
  • [3]Holmin S, Soderlund J, Biberfeld P, Mathiesen T: Intracerebral inflammation after human brain contusion. Neurosurgery 1998, 42:291-298. discussion 298-299
  • [4]Whalen MJ, Carlos TM, Kochanek PM, Clark RS, Heineman S, Schiding JK, Franicola D, Memarzadeh F, Lo W, Marion DW, Dekosky ST: Neutrophils do not mediate blood-brain barrier permeability early after controlled cortical impact in rats. J Neurotrauma 1999, 16:583-594.
  • [5]Soares HD, Hicks RR, Smith D, McIntosh TK: Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 1995, 15:8223-8233.
  • [6]Clausen F, Lorant T, Lewen A, Hillered L: T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J Neurotrauma 2007, 24:1295-1307.
  • [7]Clark RS, Carlos TM, Schiding JK, Bree M, Fireman LA, DeKosky ST, Kochanek PM: Antibodies against Mac-1 attenuate neutrophil accumulation after traumatic brain injury in rats. J Neurotrauma 1996, 13:333-341.
  • [8]Carlos TM, Clark RS, Franicola-Higgins D, Schiding JK, Kochanek PM: Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats. J Leukoc Biol 1997, 61:279-285.
  • [9]Wedmore CV, Williams TJ: Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature 1981, 289:646-650.
  • [10]Lindbom L: Regulation of vascular permeability by neutrophils in acute inflammation. Chem Immunol Allergy 2003, 83:146-166.
  • [11]Arfors KE, Lundberg C, Lindbom L, Lundberg K, Beatty PG, Harlan JM: A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 1987, 69:338-340.
  • [12]Schoettle RJ, Kochanek PM, Magargee MJ, Uhl MW, Nemoto EM: Early polymorphonuclear leukocyte accumulation correlates with the development of posttraumatic cerebral edema in rats. J Neurotrauma 1990, 7:207-217.
  • [13]Hartl R, Medary MB, Ruge M, Arfors KE, Ghajar J: Early white blood cell dynamics after traumatic brain injury: effects on the cerebral microcirculation. J Cereb Blood Flow Metab 1997, 17:1210-1220.
  • [14]Uhl MW, Biagas KV, Grundl PD, Barmada MA, Schiding JK, Nemoto EM, Kochanek PM: Effects of neutropenia on edema, histology, and cerebral blood flow after traumatic brain injury in rats. J Neurotrauma 1994, 11:303-315.
  • [15]Jin R, Yang G, Li G: Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010, 87:779-789.
  • [16]Ikegame Y, Yamashita K, Hayashi S, Yoshimura S, Nakashima S, Iwama T: Neutrophil elastase inhibitor prevents ischemic brain damage via reduction of vasogenic edema. Hypertens Res 2010, 33:703-707.
  • [17]Morancho A, Rosell A, Garcia-Bonilla L, Montaner J: Metalloproteinase and stroke infarct size: role for anti-inflammatory treatment? Ann N Y Acad Sci 2010, 1207:123-133.
  • [18]Moxon-Emre I, Schlichter LC: Neutrophil depletion reduces blood-brain barrier breakdown, axon injury, and inflammation after intracerebral hemorrhage. J Neuropathol Exp Neurol 2011, 70:218-235.
  • [19]Zhuang J, Shackford SR, Schmoker JD, Anderson ML: The association of leukocytes with secondary brain injury. J Trauma 1993, 35:415-422.
  • [20]Emerich DF, Dean RL, Bartus RT: The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp Neurol 2002, 173:168-181.
  • [21]Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL: A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 1991, 39:253-262.
  • [22]Clausen F, Hanell A, Bjork M, Hillered L, Mir AK, Gram H, Marklund N: Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 2009, 30:385-396.
  • [23]Soehnlein O, Oehmcke S, Ma X, Rothfuchs AG, Frithiof R, van Roijen N, Morgelin M, Herwald H, Lindbom L: Neutrophil degranulation mediates severe lung damage triggered by streptococcal M1 protein. Eur Respir J 2008.
  • [24]Clausen F, Hanell A, Israelsson C, Hedin J, Ebendal T, Mir AK, Gram H, Marklund N: Neutralization of interleukin-1beta reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 2011.
  • [25]Zhang C, Raghupathi R, Saatman KE, Smith DH, Stutzmann JM, Wahl F, McIntosh TK: Riluzole attenuates cortical lesion size, but not hippocampal neuronal loss, following traumatic brain injury in the rat. J Neurosci Res 1998, 52:342-349.
  • [26]Kochanek PM, Marion DW, Zhang W, Schiding JK, White M, Palmer AM, Clark RS, O'Malley ME, Styren SD, Ho C, et al.: Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J Neurotrauma 1995, 12:1015-1025.
  • [27]Clark RS, Schiding JK, Kaczorowski SL, Marion DW, Kochanek PM: Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models. J Neurotrauma 1994, 11:499-506.
  • [28]Hellal F, Bonnefont-Rousselot D, Croci N, Palmier B, Plotkine M, Marchand-Verrecchia C: Pattern of cerebral edema and hemorrhage in a mice model of diffuse brain injury. Neurosci Lett 2004, 357:21-24.
  • [29]Whalen MJ, Carlos TM, Kochanek PM, Heineman S: Blood-brain barrier permeability, neutrophil accumulation and vascular adhesion molecule expression after controlled cortical impact in rats: a preliminary study. Acta Neurochir Suppl 1998, 71:212-214.
  • [30]Engelhardt B, Sorokin L: The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 2009, 31:497-511.
  • [31]Biber N, Toklu HZ, Solakoglu S, Gultomruk M, Hakan T, Berkman Z, Dulger FG: Cysteinyl-leukotriene receptor antagonist montelukast decreases blood-brain barrier permeability but does not prevent oedema formation in traumatic brain injury. Brain Inj 2009, 23:577-584.
  • [32]Shapira Y, Setton D, Artru AA, Shohami E: Blood-brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth Analg 1993, 77:141-148.
  • [33]Lewen A, Matz P, Chan PH: Free radical pathways in CNS injury. J Neurotrauma 2000, 17:871-890.
  • [34]Nguyen HX, O'Barr TJ, Anderson AJ: Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha. J Neurochem 2007, 102:900-912.
  • [35]Rivest S: Regulation of innate immune responses in the brain. Nat Rev Immunol 2009, 9:429-439.
  • [36]Soehnlein O, Zernecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herwald H, Bidzhekov K, Rottenberg ME, Weber C, Lindbom L: Neutrophil secretion products pave the way for inflammatory monocytes. Blood 2008, 112:1461-1471.
  • [37]Khan M, Im YB, Shunmugavel A, Gilg AG, Dhindsa RK, Singh AK, Singh I: Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J Neuroinflammation 2009, 6:32. BioMed Central Full Text
  • [38]Zhu ZF, Wang QG, Han BJ, William CP: Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res Bull 2010, 83:272-277.
  • [39]Knoblach SM, Faden AI: Administration of either anti-intercellular adhesion molecule-1 or a nonspecific control antibody improves recovery after traumatic brain injury in the rat. J Neurotrauma 2002, 19:1039-1050.
  • [40]Semple BD, Bye N, Ziebell JM, Morganti-Kossmann MC: Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol Dis 2010, 40:394-403.
  • [41]Lloyd E, Somera-Molina K, Van Eldik LJ, Watterson DM, Wainwright MS: Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J Neuroinflammation 2008, 5:28. BioMed Central Full Text
  • [42]Wang X, Jung J, Asahi M, Chwang W, Russo L, Moskowitz MA, Dixon CE, Fini ME, Lo EH: Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J Neurosci 2000, 20:7037-7042.
  • [43]Shohami E, Gallily R, Mechoulam R, Bass R, Ben-Hur T: Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. J Neuroimmunol 1997, 72:169-177.
  • [44]Marklund N, Lewander T, Clausen F, Hillered L: Effects of the nitrone radical scavengers PBN and S-PBN on in vivo trapping of reactive oxygen species after traumatic brain injury in rats. J Cereb Blood Flow Metab 2001, 21:1259-1267.
  • [45]Justicia C, Panes J, Sole S, Cervera A, Deulofeu R, Chamorro A, Planas AM: Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab 2003, 23:1430-1440.
  • [46]Matsuo Y, Onodera H, Shiga Y, Nakamura M, Ninomiya M, Kihara T, Kogure K: Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 1994, 25:1469-1475.
  • [47]Matsuo Y, Onodera H, Shiga Y, Shozuhara H, Ninomiya M, Kihara T, Tamatani T, Miyasaka M, Kogure K: Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat. Brain Res 1994, 656:344-352.
  文献评价指标  
  下载次数:48次 浏览次数:57次