期刊论文详细信息
Genome Biology
THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data
Benjamin J Raphael1  Ahmad Mahmoody2  Layla Oesper2 
[1] Center for Computational Molecular Biology, Brown University, Box 1910, Providence, RI 02912, USA;Department of Computer Science, Brown University, 115 Waterman Street, Providence, RI 02912, USA
关键词: algorithms;    tumor evolution;    DNA sequencing;    intra-tumor heterogeneity;    Cancer genomics;   
Others  :  864121
DOI  :  10.1186/gb-2013-14-7-r80
 received in 2013-04-26, accepted in 2013-07-29,  发布年份 2013
PDF
【 摘 要 】

Tumor samples are typically heterogeneous, containing admixture by normal, non-cancerous cells and one or more subpopulations of cancerous cells. Whole-genome sequencing of a tumor sample yields reads from this mixture, but does not directly reveal the cell of origin for each read. We introduce THetA (Tumor Heterogeneity Analysis), an algorithm that infers the most likely collection of genomes and their proportions in a sample, for the case where copy number aberrations distinguish subpopulations. THetA successfully estimates normal admixture and recovers clonal and subclonal copy number aberrations in real and simulated sequencing data. THetA is available at http://compbio.cs.brown.edu/software/. webcite

【 授权许可】

   
2013 Oesper et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725081542583.pdf 1582KB PDF download
48KB Image download
103KB Image download
98KB Image download
131KB Image download
125KB Image download
36KB Image download
【 图 表 】

【 参考文献 】
  • [1]Nowell PC: The clonal evolution of tumor cell populations. Science 1976, 194:23-28.
  • [2]Parsons BL: Many different tumor types have polyclonal tumor origin: evidence and implications. Mutat Res 2008, 659:232-247.
  • [3]Ding L, Raphael BJ, Chen F, Wendl MC: Advances for studying clonal evolution in cancer. Cancer Lett 2013, in press.
  • [4]Fridlyand J, Snijders AM, Pinkel D, Albertson DG, Jain AN: Hidden Markov models approach to the analysis of array CGH data. J Multivariate Analysis 2004, 90:132-153.
  • [5]Assie G, LaFramboise T, Platzer P, Bertherat J, Stratakis CA, Eng C: SNP arrays in heterogeneous tissue: highly accurate collection of both germline and somatic genetic information from unpaired single tumor samples. Am J Hum Genet 2008, 82:903-915.
  • [6]Yau C, Mouradov D, Jorissen RN, Colella S, Mirza G, Steers G, Harris A, Ragoussis J, Sieber O, Holmes CC: A statistical approach for detecting genome aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data. Genome Biol 2010, 11:R92.
  • [7]Attiyeh EF, Diskin SJ, Attiyeh MA, Mosse YP, Hou C, Jackson EM, Kim C, Glessner J, Hakonarson H, Biegel JA, Maris JM: Genomic copy number determination in cancer cells from single nucleotide polymorphism microarrays based on quantitative genotyping corrected for aneuploidy. Genome Res 2009, (19):276-283.
  • [8]Greenman CD, Bignell G, Butler A, Edkins S, Hinton J, Beare D, Swamy S, Santarius T, Chen L, Widaa S, Futreal PA, Stratton MR: PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data. Biostatistics 2010, 11:164-175.
  • [9]Parisi F, Ariyan S, Narayan D, Bacchiocchi A, Hoyt K, Cheng E, Xu F, Li P, Halaban R, Kluger Y: Detecting copy number status and uncovering subclonal markers in heterogeneous tumor biopsies. BMC Genomics 2011, 12:230. BioMed Central Full Text
  • [10]Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012, 22:568-576.
  • [11]Yuan Y, Failmezger H, Rueda OM, Ali HR, Graf S, Chin SF, Schwarz RF, Curtis C, Dunning MJ, Bardwell H, Johnson N, Doyle S, Turashvili G, Provenzano E, Aparicio S, Caldas C, Markowetz F: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci Transl Med 2012, 4:157ra143.
  • [12]Van Loo P, Nordgard SH, Lingjorde OC, Russnes HG, Rye IH, Sun W, Weigman VJ, Marynen P, Zetterberg A, Naume B, Perou CM, Borrensen-Dale AL, Kristensen VN: Allele-specific copy number analysis of tumors. Proc Natl Acad Sci USA 2010, 107:16910-16915.
  • [13]Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA, Lander ES, Meyerson M, Getz G: Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012, 30:413-421.
  • [14]Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, Sougnez C, Stewart C, Sivachenko A, Wang L, Wan Y, Zhang W, Shukla SA, Vartanov A, Fernandes SM, Saksena G, Cibulskis K, Tesar B, Gabriel S, Hacohen N, Meyerson M, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ: Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013, 152:714-726.
  • [15]Su X, Zhang L, Zhang J, Meric-Bernstam F, Weinstein JN: PurityEst: estimating purity of human tumor samples using next-generation sequencing data. Bioinformatics 2012, 28:2265-2266.
  • [16]Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, et al.: The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 2012, 486:395-399.
  • [17]Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD, McMichael JF, Wallis JW, Lu C, Shen D, Harris CC, Dooling DJ, Fulton RS, Fulton LL, Chen K, Schmidt H, Kalicki-Veizer J, Magrini VJ, Cook L, McGrath SD, Vickery TL, Wendl MC, Heath S, Watson MA, Link DC, Tomasson MH, et al.: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012, 481:506-510.
  • [18]Gusnanto A, Wood HM, Pawitan Y, Rabbitts P, Berri S: Correcting for cancer genome size and tumour cell content enables better estimation of copy number alterations from next-generation sequence data. Bioinformatics 2012, 28:40-47.
  • [19]Shibata D: Cancer. Heterogeneity and tumor history. Science 2012, 336:304-305.
  • [20]Greaves M, Maley CC: Clonal evolution in cancer. Nature 2012, 481:306-313.
  • [21]Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA, Downing JR: Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 2008, 322:1377-1380.
  • [22]Tolliver D, Tsourakakis C, Subramanian A, Shackney S, Schwartz R: Robust unmixing of tumor states in array comparative genomic hybridization data. Bioinformatics 2010, 26:i106-114.
  • [23]Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012, 366:883-892.
  • [24]Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, Riggs M, Eberling Y, Troge J, Grubor V, Levy D, Lundin P, Maner S, Zetterberg A, Hicks J, Wigler M: Inferring tumor progression from genomic heterogeneity. Genome Res 2010, 20:68-80.
  • [25]Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, Raine K, Jones D, Marshall J, Ramakrishna M, Shlien A, Cooke SL, Hinton J, Menzies A, Stebbings LA, Leroy C, Jia M, Rance R, Mudie LJ, Gamble SJ, Stephens PJ, McLaren S, Tarpey PS, Papaemmanuil E, Davies HR, Varela I, McBride DJ, Bignell GR, Leung K, Butler AP, et al.: The life history of 21 breast cancers. Cell 2012, 149:994-1007.
  • [26]Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M: Tumour evolution inferred by single-cell sequencing. Nature 2011, 472:90-94.
  • [27]Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Wu K, Wu H, He W, Zeng L, Xing M, Wu R, Jiang H, Liu X, Cao D, Guo G, Hu X, Gui Y, Li Z, Xie W, Sun X, Shi M, Cai Z, Wang B, Zhong M, Li J, Lu Z, Gu N, et al.: Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 2012, 148:886-895.
  • [28]Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D, Wu H, Ye X, Ye C, Wu R, Jian M, Chen Y, Xie W, Zhang R, Chen L, Liu X, Yao X, Zheng H, Yu C, Li Q, Gong Z, Mao M, Yang X, Yang L, Li J, Wang W, et al.: Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 2012, 148:873-885.
  • [29]Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, Troge J, Ravi K, Esposito D, Lakshmi B, Wigler M, Navin N, Hicks J: Genome-wide copy number analysis of single cells. Nat Protoc 2012, 7:1024-1041.
  • [30]Meyerson M, Gabriel S, Getz G: Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 2010, 11:685-696.
  • [31]Ding L, Wendl MC, Koboldt DC, Mardis ER: Analysis of next-generation genomic data in cancer: accomplishments and challenges. Hum Mol Genet 2010, 19:R188-196.
  • [32]Xi R, Hadjipanayis AG, Luquette LJ, Kim TM, Lee E, Zhang J, Johnson MD, Muzny DM, Wheeler DA, Gibbs RA, Kucherlapati R, Park PJ: Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion. Proc Natl Acad Sci USA 2011, 108:E1128-1136.
  • [33]Chiang DY, Getz G, Jaffe DB, O'Kelly MJ, Zhao X, Carter SL, Russ C, Nusbaum C, Meyerson M, Lander ES: High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods 2009, 6:99-103.
  • [34]Miller CA, Hampton O, Coarfa C, Milosavljevic A: ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads. PLoS ONE 2011, 6:e16327.
  • [35]Raphael BJ, Volik S, Collins C, Pevzner PA: Reconstructing tumor genome architectures. Bioinformatics 2003, 19(Suppl 2):i162-171.
  • [36]Greenman CD, Pleasance ED, Newman S, Yang F, Fu B, Nik-Zainal S, Jones D, Lau KW, Carter N, Edwards PA, Futreal PA, Stratton MR, Campbell PJ: Estimation of rearrangement phylogeny for cancer genomes. Genome Res 2012, 22:346-361.
  • [37]Oesper L, Ritz A, Aerni SJ, Drebin R, Raphael BJ: Reconstructing cancer genomes from paired-end sequencing data. BMC Bioinformatics 2012, 13(Suppl 6):S10. BioMed Central Full Text
  • [38]McPherson A, Wu C, Wyatt AW, Shah S, Collins C, Sahinalp SC: nFuse: discovery of complex genomic rearrangements in cancer using high-throughput sequencing. Genome Res 2012, 22:2250-2261.
  • [39]Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER: BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 2009, 6:677-681.
  • [40]Bashir A, Volik S, Collins C, Bafna V, Raphael BJ: Evaluation of paired-end sequencing strategies for detection of genome rearrangements in cancer. PLoS Comput Biol 2008, 4:e1000051.
  • [41]Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, Hoadley K, Triche TJ, Laird PW, Baty JD, Fulton LL, Fulton R, Heath SE, Kalicki-Veizer J, Kandoth C, Klco JM, Koboldt DC, Kanchi KL, Kulkarni S, Lamprecht TL, Larson DE, Lin L, Lu C, McLellan MD, McMichael JF, Payton J, Schmidt H, Spencer DH, Tomasson MH, Wallis JW, et al.: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013, 368:2059-2074.
  • [42]Cavalli LR, Cavalieri LM, Ribeiro LA, Cavalli IJ, Silveira R, Rogatto SR: Cytogenetic evaluation of 20 primary breast carcinomas. Hereditas 1997, 126:261-268.
  • [43]Nordgard SH, Johansen FE, Alnaes GI, Bucher E, Syvanen AC, Naume B, Borresen-Dale AL, Kristensen VN: Genome-wide analysis identifies 16q deletion associated with survival, molecular subtypes, mRNA expression, and germline haplotypes in breast cancer patients. Genes Chromosomes Cancer 2008, 47:680-696.
  • [44]Vos CB, ter Haar NT, Rosenberg C, Peterse JL, Cleton-Jansen AM, Cornelisse CJ, van de Vijver MJ: Genetic alterations on chromosome 16 and 17 are important features of ductal carcinoma in situ of the breast and are associated with histologic type. Br J Cancer 1999, 81:1410-1418.
  • [45]Castells A, Gusella JF, Ramesh V, Rustgi AK: A region of deletion on chromosome 22q13 is common to human breast and colorectal cancers. Cancer Res 2000, 60:2836-2839.
  • [46]Driouch K, Dorion-Bonnet F, Briffod M, Champeme MH, Longy M, Lidereau R: Loss of heterozygosity on chromosome arm 16q in breast cancer metastases. Genes Chromosomes Cancer 1997, 19:185-191.
  • [47]Chen T, Sahin A, Aldaz CM: Deletion map of chromosome 16q in ductal carcinoma in situ of the breast: refining a putative tumor suppressor gene region. Cancer Res 1996, 56:5605-5609.
  • [48]Sindi S, Helman E, Bashir A, Raphael BJ: A geometric approach for classification and comparison of structural variants. Bioinformatics 2009, 25:i222-230.
  • [49]Anbazhagan R, Fujii H, Gabrielson E: Allelic loss of chromosomal arm 8p in breast cancer progression. Am J Pathol 1998, 152:815-819.
  • [50]Yaremko ML, Recant WM, Westbrook CA: Loss of heterozygosity from the short arm of chromosome 8 is an early event in breast cancers. Genes Chromosomes Cancer 1995, 13:186-191.
  • [51]Adams J, Williams SV, Aveyard JS, Knowles MA: Loss of heterozygosity analysis and DNA copy number measurement on 8p in bladder cancer reveals two mechanisms of allelic loss. Cancer Res 2005, 65:66-75.
  • [52]Dewal N, Hu Y, Freedman ML, Laframboise T, Pe'er I: Calling amplified haplotypes in next generation tumor sequence data. Genome Res 2012, 22:362-374.
  • [53]Zakov S, Kinsella M, Bafna V: An algorithmic approach for breakage-fusion-bridge detection in tumor genomes. Proc Natl Acad Sci USA 2013, 110:5546-5551.
  • [54]Korbel JO, Campbell PJ: Criteria for inference of chromothripsis in cancer genomes. Cell 2013, 152:1226-1236.
  • [55]Raphael BJ, Pevzner PA: Reconstructing tumor amplisomes. Bioinformatics 2004, 20(Suppl 1):i265-273.
  • [56]Quon G, Morris Q: ISOLATE: a computational strategy for identifying the primary origin of cancers using high-throughput sequencing. Bioinformatics 2009, 25:2882-2889.
  • [57]Hemmeke R, Koppe M, Lee J, Weismantel R: Nonlinear integer programming. In 50 Years of Integer Programming 1958-2008 Edited by Junger M, Liebling TM, Naddef D, Nemhauser GL, Pulleyblank WR, Reinelt G, Rinaldi G, Wolsey LA, Berlin and Heidelberg: Springer. 2010, 561-618.
  • [58]Lee H, Schatz MC: Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score. Bioinformatics 2012, 28:2097-2105.
  • [59]Chen J, Chen Z: Extended Bayesian information criteria for model selection with large model spaxes. Biometrika 2008, 95:759-771.
  • [60]Raphael research lab software. [http://compbio.cs.brown.edu/software/] webcite
  • [61]Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ: The UCSC Table Browser data retrieval tool. Nucleic Acids Res 2004, 32:D493-496.
  • [62]The Cancer Genome Atlas. [http://cancergenome.nih.gov] webcite
  文献评价指标  
  下载次数:68次 浏览次数:22次