Journal of Neuroinflammation | |
MicroRNA-124 as a novel treatment for persistent hyperalgesia | |
Annemieke Kavelaars1  Cobi J Heijnen2  Jitske Zijlstra2  Qi-Liang Mao-Ying1  Xiao-Jiao Huo1  Hanneke LDM Willemen2  | |
[1] Integrative Immunology and Behavior Program, College of ACES and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA;Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands | |
关键词: M1/M2 balance; GRK2; Neuropathic pain; Inflammatory hyperalgesia; Microglia/macrophages; miR-124; | |
Others : 1212491 DOI : 10.1186/1742-2094-9-143 |
|
received in 2012-04-17, accepted in 2012-06-25, 发布年份 2012 | |
【 摘 要 】
Background
Chronic pain is often associated with microglia activation in the spinal cord. We recently showed that microglial levels of the kinase G protein–coupled receptor kinase (GRK)2 are reduced in models of chronic pain. We also found that mice with a cell-specific reduction of around 50% in GRK2 level in microglia/macrophages (LysM-GRK2+/− mice) develop prolonged inflammatory hyperalgesia concomitantly with ongoing spinal microglia/macrophage activation. The microRNA miR-124 is thought to keep microglia/macrophages in brain and spinal cord in a quiescent state. In the present study, we investigated the contribution of miR-124 to regulation of hyperalgesia and microglia/macrophage activation in GRK2-deficient mice. In addition, we investigated the effect of miR-124 on chronic inflammatory and neuropathic pain in wild-type (WT) mice.
Methods
Hyperalgesia was induced by intraplantar IL-1β in WT and LysM-GRK2+/− mice. We determined spinal cord microglia/macrophage miR-124 expression and levels of pro-inflammatory M1 and anti-inflammatory M2 activation markers. The effect of intrathecal miR-124 treatment on IL-1β-induced hyperalgesia and spinal M1/M2 phenotype, and on carrageenan-induced and spared nerve injury-induced chronic hyperalgesia in WT mice was analyzed.
Results
Transition from acute to persistent hyperalgesia in LysM-GRK2+/− mice is associated with reduced spinal cord microglia miR-124 levels. In our LysM-GRK2+/− mice, there was a switch towards a pro-inflammatory M1 phenotype together with increased pro-inflammatory cytokine production. Intrathecal administration of miR-124 completely prevented the transition to persistent pain in response to IL-1β in LysM-GRK2+/− mice. The miR-124 treatment also normalized expression of spinal M1/M2 markers of LysM-GRK2+/− mice. Moreover, intrathecal miR-124 treatment reversed the persistent hyperalgesia induced by carrageenan in WT mice and prevented development of mechanical allodynia in the spared nerve injury model of chronic neuropathic pain in WT mice.
Conclusions
We present the first evidence that intrathecal miR-124 treatment can be used to prevent and treat persistent inflammatory and neuropathic pain. In addition, we show for the first time that persistent hyperalgesia in GRK2-deficient mice is associated with an increased ratio of M1/M2 type markers in spinal cord microglia/macrophages, which is restored by miR-124 treatment. We propose that intrathecal miR-124 treatment might be a powerful novel treatment for pathological chronic pain with persistent microglia activation.
【 授权许可】
2012 Willemen et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150614094641220.pdf | 1718KB | download | |
Figure 7. | 42KB | Image | download |
Figure 6. | 31KB | Image | download |
Figure 5. | 42KB | Image | download |
Figure 4. | 89KB | Image | download |
Figure 3. | 28KB | Image | download |
Figure 2. | 117KB | Image | download |
Figure 1. | 48KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL: MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 2011, 17:64-70.
- [2]Clark AK, Grist J, Al-Kashi A, Perretti M, Malcangio M: Spinal cathepsin S and fractalkine contribute to chronic pain in collagen induced arthritis. Arthritis Rheum 2011, 64:2038-47.
- [3]DeLeo JA, Yezierski RP: The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 2001, 90:1-6.
- [4]Milligan ED, Watkins LR: Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 2009, 10:23-36.
- [5]Ren K, Dubner R: Interactions between the immune and nervous systems in pain. Nat Med 2010, 16:1267-1276.
- [6]Watkins LR, Hutchinson MR, Ledeboer A, Wieseler-Frank J, Milligan ED, Maier SF: Norman Cousins Lecture. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun 2007, 21:131-146.
- [7]Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ, Hao S: Glial TNFalpha in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats. Mol Pain 2011, 7:40. BioMed Central Full Text
- [8]Eijkelkamp N, Heijnen CJ, Willemen HL, Deumens R, Joosten EA, Kleibeuker W, Den HI, van Velthoven CT, Nijboer C, Nassar MA, et al.: GRK2: a novel cell-specific regulator of severity and duration of inflammatory pain. J Neurosci 2010, 30:2138-2149.
- [9]Willemen HL, Eijkelkamp N, Wang H, Dantzer R, Dorn GW, Kelley KW, Heijnen CJ, Kavelaars A: Microglial/macrophage GRK2 determines duration of peripheral IL-1beta-induced hyperalgesia: contribution of spinal cord CX3CR1, p38 and IL-1 signaling. Pain 2010, 150:550-560.
- [10]Eijkelkamp N, Wang H, Garza-Carbajal A, Willemen HL, Zwartkruis FJ, Wood JN, Dantzer R, Kelley KW, Heijnen CJ, Kavelaars A: Low nociceptor GRK2 prolongs prostaglandin E2 hyperalgesia via biased cAMP signaling to Epac/Rap1, protein kinase Cepsilon, and MEK/ERK. J Neurosci 2010, 30:12806-12815.
- [11]Jimenez-Sainz MC, Murga C, Kavelaars A, Jurado-Pueyo M, Krakstad BF, Heijnen CJ, Mayor F, Aragay AM: G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits. Mol Biol Cell 2006, 17:25-31.
- [12]Kleibeuker W, Jurado-Pueyo M, Murga C, Eijkelkamp N, Mayor F, Heijnen CJ, Kavelaars A: Physiological changes in GRK2 regulate CCL2-induced signaling to ERK1/2 and Akt but not to MEK1/2 and calcium. J Neurochem 2008, 104:979-992.
- [13]Peregrin S, Jurado-Pueyo M, Campos PM, Sanz-Moreno V, Ruiz-Gomez A, Crespo P, Mayor F, Murga C: Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK. Curr Biol 2006, 16:2042-2047.
- [14]Vroon A, Heijnen CJ, Kavelaars A: GRKs and arrestins: regulators of migration and inflammation. J Leukoc Biol 2006, 80:1214-1221.
- [15]Kavelaars A, Eijkelkamp N, Willemen HL, Wang H, Carbajal AG, Heijnen CJ: Microglial GRK2: a novel regulator of transition from acute to chronic pain. Brain Behav Immun 2011, 25:1055-1060.
- [16]Fenn AM, Henry CJ, Huang Y, Dugan A, Godbout JP: Lipopolysaccharide-induced interleukin (IL)-4 receptor-alpha expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav Immun 2011, 26:766-77.
- [17]Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P: Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 2009, 210:3-12.
- [18]Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32:77-88.
- [19]Decosterd I, Woolf CJ: Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000, 87:149-158.
- [20]Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53:55-63.
- [21]Feng R, Desbordes SC, Xie H, Tillo ES, Pixley F, Stanley ER, Graf T: PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci U S A 2008, 105:6057-6062.
- [22]Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML, Dayaram T, Owens BM, Shigematsu H, Levantini E, Huettner CS, Lekstrom-Himes JA, et al.: Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 2004, 21:853-863.
- [23]Bourlier V, Zakaroff-Girard A, Miranville A, De BS, Maumus M, Sengenes C, Galitzky J, Lafontan M, Karpe F, Frayn KN, et al.: Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 2008, 117:806-815.
- [24]Fujiu K, Manabe I, Nagai R: Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J Clin Invest 2011, 121:3425-3441.
- [25]Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009, 29:13435-13444.
- [26]Komori T, Morikawa Y, Inada T, Hisaoka T, Senba E: Site-specific subtypes of macrophages recruited after peripheral nerve injury. Neuroreport 2011, 22:911-917.
- [27]Haraguchi K, Kawamoto A, Isami K, Maeda S, Kusano A, Asakura K, Shirakawa H, Mori Y, Nakagawa T, Kaneko S: TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci 2012, 32:3931-3941.
- [28]Honore P, Wade CL, Zhong C, Harris RR, Wu C, Ghayur T, Iwakura Y, Decker MW, Faltynek C, Sullivan J, et al.: Interleukin-1alphabeta gene-deficient mice show reduced nociceptive sensitivity in models of inflammatory and neuropathic pain but not post-operative pain. Behav Brain Res 2006, 167:355-364.
- [29]Bai G, Ambalavanar R, Wei D, Dessem D: Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain. Mol Pain 2007, 3:15. BioMed Central Full Text
- [30]Brandenburger T, Castoldi M, Brendel M, Grievink H, Schlosser L, Werdehausen R, Bauer I, Hermanns H: Expression of spinal cord microRNAs in a rat model of chronic neuropathic pain. Neurosci Lett 2012, 506:281-286.
- [31]Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, Asante C, Bee L, Bethry A, Perkins JR, et al.: Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 2010, 30:10860-10871.
- [32]Eijkelkamp N, Heijnen CJ, Carbajal AG, Willemen HL, Wang H, Minett MS, Wood JN, Schedlowski M, Dantzer R, Kelley KW, et al.: GRK6 acts as a critical regulator of cytokine-induced hyperalgesia by promoting PI3kinase- and inhibiting p38-signaling. Mol Med 2012, 18:556-564.