Journal of Hematology & Oncology | |
Drugging the unfolded protein response in acute leukemias | |
Afshin Samali2  Tim H. Bruemmendorf1  Michael O’Dwyer4  Edgar Jost1  Jens Panse1  Eric Chevet3  Behzad Kharabi Masouleh1  | |
[1] Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany;Department of Biochemistry, National University of Ireland, Galway, Ireland;Université Rennes 1 - ER_440 “Oncogenesis, Stress & Signaling”, Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France;Department of Medicine, National University of Ireland, Galway, Ireland | |
关键词: Small-molecule inhibitors; XBP1; Unfolded protein response; Leukemia stem cells; Acute lymphoblastic leukemia; Acute myeloid leukemia; | |
Others : 1221325 DOI : 10.1186/s13045-015-0184-7 |
|
received in 2015-05-26, accepted in 2015-07-08, 发布年份 2015 | |
【 摘 要 】
The unfolded protein response (UPR), an endoplasmic reticulum (ER) stress-induced signaling cascade, is mediated by three major stress sensors IRE-1α, PERK, and ATF6α. Studies described the UPR as a critical network in selection, adaptation, and survival of cancer cells. While previous reviews focused mainly on solid cancer cells, in this review, we summarize the recent findings focusing on acute leukemias. We take into account the impact of the underlying genetic alterations of acute leukemia cells, the leukemia stem cell pool, and provide an outline on the current genetic, clinical, and therapeutic findings. Furthermore, we shed light on the important oncogene-specific regulation of individual UPR signaling branches and the therapeutic relevance of this information to answer the question if the UPR could be an attractive novel target in acute leukemias.
【 授权许可】
2015 Kharabi Masouleh et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150729094516948.pdf | 770KB | download | |
Fig. 3. | 69KB | Image | download |
Fig. 2. | 21KB | Image | download |
Fig. 1. | 27KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
【 参考文献 】
- [1]Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012; 13(2):89-102.
- [2]Clarke HJ, Chambers JE, Liniker E, Marciniak SJ. Endoplasmic reticulum stress in malignancy. Cancer Cell. 2014; 25(5):563-73.
- [3]Chambers JE, Marciniak SJ. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 2. Protein misfolding and ER stress. Am J Physiol Cell Physiol. 2014; 307(8):C657-70.
- [4]Gorman AM, Healy SJ, Jager R, Samali A. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther. 2012; 134(3):306-16.
- [5]Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013; 1833(12):3460-70.
- [6]Chevet E, Hetz C, Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov. 2015; 5(6):586-97.
- [7]Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000; 2(6):326-32.
- [8]Shamu CE, Walter P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 1996; 15(12):3028-39.
- [9]Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P et al.. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001; 7(6):1165-76.
- [10]Rzymski T, Milani M, Singleton DC, Harris AL. Role of ATF4 in regulation of autophagy and resistance to drugs and hypoxia. Cell Cycle. 2009; 8(23):3838-47.
- [11]Ye J, Koumenis C. ATF4, an ER stress and hypoxia-inducible transcription factor and its potential role in hypoxia tolerance and tumorigenesis. Curr Mol Med. 2009; 9(4):411-6.
- [12]Ameri K, Harris AL. Activating transcription factor 4. Int J Biochem Cell Biol. 2008; 40(1):14-21.
- [13]Wek RC, Anthony TG. EXtENDINg beta cell survival by UPRegulating ATF4 translation. Cell Metab. 2006; 4(5):333-4.
- [14]Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem. 2004; 279(19):20108-17.
- [15]Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell. 2002; 3(1):99-111.
- [16]Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R et al.. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000; 6(6):1355-64.
- [17]Brodsky JL, Skach WR. Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol. 2011; 23(4):464-75.
- [18]Uemura A, Oku M, Mori K, Yoshida H. Unconventional splicing of XBP1 mRNA occurs in the cytoplasm during the mammalian unfolded protein response. J Cell Sci. 2009; 122(Pt 16):2877-86.
- [19]Jurkin J, Henkel T, Nielsen AF, Minnich M, Popow J, Kaufmann T et al.. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J. 2014; 33(24):2922-36.
- [20]Lu Y, Liang FX, Wang X. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol Cell. 2014; 55(5):758-70.
- [21]Kosmaczewski SG, Edwards TJ, Han SM, Eckwahl MJ, Meyer BI, Peach S et al.. The RtcB RNA ligase is an essential component of the metazoan unfolded protein response. EMBO Rep. 2014; 15(12):1278-85.
- [22]Ray A, Zhang S, Rentas C, Caldwell KA, Caldwell GA. RTCB-1 mediates neuroprotection via XBP-1 mRNA splicing in the unfolded protein response pathway. J Neurosci. 2014; 34(48):16076-85.
- [23]Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C et al.. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell. 2007; 27(1):53-66.
- [24]Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T et al.. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 2002; 16(4):452-66.
- [25]Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014; 39(5):245-54.
- [26]Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer. 2014; 14(9):581-97.
- [27]Yadav RK, Chae SW, Kim HR, Chae HJ. Endoplasmic reticulum stress and cancer. J Cancer Prevention. 2014; 19(2):75-88.
- [28]Hetz C, Chevet E. Theme series—UPR in cancer. Semin Cancer Biol. 2015. doi:10.1016/j.semcancer.2015.04.008.
- [29]Dejeans N, Barroso K, Fernandez-Zapico ME, Samali A, Chevet E. Novel roles of the unfolded protein response in the control of tumor development and aggressiveness. Semin Cancer Biol. 2015. doi:10.1016/j.semcancer.2015.04.007.
- [30]Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood. 2013; 121(18):3563-72.
- [31]Conway O’Brien E, Prideaux S, Chevassut T. The epigenetic landscape of acute myeloid leukemia. Adv Hematol. 2014; 2014:103175.
- [32]Eriksson A, Lennartsson A, Lehmann S. Epigenetic aberrations in acute myeloid leukemia: early key events during leukemogenesis. Exp Hematol. 2015. doi:10.1016/j.exphem.2015.05.009.
- [33]Lamba G, Zaidi SK, Luebbers K, Verschraegen C, Stein GS, Rosmarin A. Epigenetic landscape of acute myelogenous leukemia—moving toward personalized medicine. J Cell Biochem. 2014; 115(10):1669-72.
- [34]Mazzarella L, Riva L, Luzi L, Ronchini C, Pelicci PG. The genomic and epigenomic landscapes of AML. Semin Hematol. 2014; 51(4):259-72.
- [35]Gutierrez SE, Romero-Oliva FA. Epigenetic changes: a common theme in acute myelogenous leukemogenesis. J Hematol Oncol. 2013; 6:57.
- [36]Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med. 2012; 6(3):248-62.
- [37]Lo-Coco F, Hasan SK. Understanding the molecular pathogenesis of acute promyelocytic leukemia. Best Pract Res Clin Haematol. 2014; 27(1):3-9.
- [38]Sakamoto KM, Grant S, Saleiro D, Crispino JD, Hijiya N, Giles F et al.. Targeting novel signaling pathways for resistant acute myeloid leukemia. Mol Genet Metab. 2015; 114(3):397-402.
- [39]Roboz GJ. Current treatment of acute myeloid leukemia. Curr Opin Oncol. 2012; 24(6):711-9.
- [40]Friedman AD, Keefer JR, Kummalue T, Liu H, Wang QF, Cleaves R. Regulation of granulocyte and monocyte differentiation by CCAAT/enhancer binding protein alpha. Blood Cells Mol Dis. 2003; 31(3):338-41.
- [41]Nerlov C. C/EBPalpha mutations in acute myeloid leukaemias. Nat Rev Cancer. 2004; 4(5):394-400.
- [42]Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al.. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet. 2001; 27(3):263-70.
- [43]Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematology Am Soc Hematol Educ Program. 2013; 2013:220-6.
- [44]De Braekeleer E, Douet-Guilbert N, De Braekeleer M. RARA fusion genes in acute promyelocytic leukemia: a review. Expert Rev Hematol. 2014; 7(3):347-57.
- [45]Burnett AK, Hills RK, Milligan DW, Goldstone AH, Prentice AG, McMullin MF et al.. Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol. 2010; 28(4):586-95.
- [46]DiNardo CD, Cortes JE. New treatment for acute myelogenous leukemia. Expert Opin Pharmacother. 2015; 16(1):95-106.
- [47]Montalban-Bravo G, Garcia-Manero G. Novel drugs for older patients with acute myeloid leukemia. Leukemia. 2015; 29(4):760-9.
- [48]Erba HP. Finding the optimal combination therapy for the treatment of newly diagnosed AML in older patients unfit for intensive therapy. Leuk Res. 2015; 39(2):183-91.
- [49]Fernandez HF, Sun Z, Yao X, Litzow MR, Luger SM, Paietta EM et al.. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med. 2009; 361(13):1249-59.
- [50]Walter RB, Estey EH. Management of older or unfit patients with acute myeloid leukemia. Leukemia. 2015; 29(4):770-5.
- [51]Schardt JA, Mueller BU, Pabst T. Activation of the unfolded protein response in human acute myeloid leukemia. Methods Enzymol. 2011; 489:227-43.
- [52]Schardt JA, Weber D, Eyholzer M, Mueller BU, Pabst T. Activation of the unfolded protein response is associated with favorable prognosis in acute myeloid leukemia. Clin Cancer Res. 2009; 15(11):3834-41.
- [53]Schardt JA, Eyholzer M, Timchenko NA, Mueller BU, Pabst T. Unfolded protein response suppresses CEBPA by induction of calreticulin in acute myeloid leukaemia. J Cell Mol Med. 2010; 14(6B):1509-19.
- [54]Haefliger S, Klebig C, Schaubitzer K, Schardt J, Timchenko N, Mueller BU et al.. Protein disulfide isomerase blocks CEBPA translation and is up-regulated during the unfolded protein response in AML. Blood. 2011; 117(22):5931-40.
- [55]Collins SJ. Retinoic acid receptors, hematopoiesis and leukemogenesis. Curr Opin Hematol. 2008; 15(4):346-51.
- [56]Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E et al.. Acute promyelocytic leukemia: from genetics to treatment. Blood. 1994; 83(1):10-25.
- [57]Lonard DM, Lanz RB, O’Malley BW. Nuclear receptor coregulators and human disease. Endocr Rev. 2007; 28(5):575-87.
- [58]Loinder K, Soderstrom M. Functional analyses of an LXXLL motif in nuclear receptor corepressor (N-CoR). J Steroid Biochem Mol Biol. 2004; 91(4–5):191-6.
- [59]Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J et al.. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature. 1997; 387(6628):43-8.
- [60]Khan MM, Nomura T, Kim H, Kaul SC, Wadhwa R, Shinagawa T et al.. Role of PML and PML-RARalpha in Mad-mediated transcriptional repression. Mol Cell. 2001; 7(6):1233-43.
- [61]Khan MM, Nomura T, Chiba T, Tanaka K, Yoshida H, Mori K et al.. The fusion oncoprotein PML-RARalpha induces endoplasmic reticulum (ER)-associated degradation of N-CoR and ER stress. J Biol Chem. 2004; 279(12):11814-24.
- [62]Greim H, Kaden DA, Larson RA, Palermo CM, Rice JM, Ross D et al.. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann N Y Acad Sci. 2014; 1310:7-31.
- [63]Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008; 30(4):393-402.
- [64]Coltella N, Percio S, Valsecchi R, Cuttano R, Guarnerio J, Ponzoni M et al.. HIF factors cooperate with PML-RARalpha to promote acute promyelocytic leukemia progression and relapse. EMBO Mol Med. 2014; 6(5):640-50.
- [65]Deeb G, Vaughan MM, McInnis I, Ford LA, Sait SN, Starostik P et al.. Hypoxia-inducible factor-1alpha protein expression is associated with poor survival in normal karyotype adult acute myeloid leukemia. Leuk Res. 2011; 35(5):579-84.
- [66]Visani G, Bernasconi P, Boni M, Castoldi GL, Ciolli S, Clavio M et al.. The prognostic value of cytogenetics is reinforced by the kind of induction/consolidation therapy in influencing the outcome of acute myeloid leukemia—analysis of 848 patients. Leukemia. 2001; 15(6):903-9.
- [67]Delaunay J, Vey N, Leblanc T, Fenaux P, Rigal-Huguet F, Witz F et al.. Prognosis of inv(16)/t(16;16) acute myeloid leukemia (AML): a survey of 110 cases from the French AML Intergroup. Blood. 2003; 102(2):462-9.
- [68]Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008; 8(11):851-64.
- [69]Rouault-Pierre K, Lopez-Onieva L, Foster K, Anjos-Afonso F, Lamrissi-Garcia I, Serrano-Sanchez M et al.. HIF-2alpha protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell. 2013; 13(5):549-63.
- [70]Kuwabara WM, Zhang L, Schuiki I, Curi R, Volchuk A, Alba-Loureiro TC. NADPH oxidase-dependent production of reactive oxygen species induces endoplasmatic reticulum stress in neutrophil-like HL60 cells. PLoS One. 2015; 10(2):e0116410.
- [71]Ilaria RL, Jr. Pathobiology of lymphoid and myeloid blast crisis and management issues. Hematology Am Soc Hematol Educ Program. 2005:188–94. doi:10.1182/asheducation-2005.1.188.
- [72]de Boer J, Walf-Vorderwulbecke V, Williams O. In focus: MLL-rearranged leukemia. Leukemia. 2013; 27(6):1224-8.
- [73]Bernt KM, Hunger SP. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol. 2014; 4:54.
- [74]Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015; 125(26):3977-87.
- [75]Woo JS, Alberti MO, Tirado CA. Childhood B-acute lymphoblastic leukemia: a genetic update. Exp Hematol Oncol. 2014; 3:16.
- [76]Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L et al.. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013; 45(3):242-52.
- [77]Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D et al.. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014; 371(11):1005-15.
- [78]McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F et al.. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol. 2011; 226(11):2762-81.
- [79]Irving J, Matheson E, Minto L, Blair H, Case M, Halsey C et al.. Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood. 2014; 124(23):3420-30.
- [80]Knight T, Irving JA. Ras/Raf/MEK/ERK pathway activation in childhood acute lymphoblastic leukemia and its therapeutic targeting. Front Oncol. 2014; 4:160.
- [81]Packer LM, Rana S, Hayward R, O’Hare T, Eide CA, Rebocho A et al.. Nilotinib and MEK inhibitors induce synthetic lethality through paradoxical activation of RAF in drug-resistant chronic myeloid leukemia. Cancer Cell. 2011; 20(6):715-27.
- [82]Klein F, Feldhahn N, Harder L, Wang H, Wartenberg M, Hofmann WK et al.. The BCR-ABL1 kinase bypasses selection for the expression of a pre-B cell receptor in pre-B acute lymphoblastic leukemia cells. J Exp Med. 2004; 199(5):673-85.
- [83]Maino E, Sancetta R, Viero P, Imbergamo S, Scattolin AM, Vespignani M et al.. Current and future management of Ph/BCR-ABL positive ALL. Expert Rev Anticancer Ther. 2014; 14(6):723-40.
- [84]Tanimura A, Yujiri T, Tanaka Y, Hatanaka M, Mitani N, Nakamura Y et al.. The anti-apoptotic role of the unfolded protein response in Bcr-Abl-positive leukemia cells. Leuk Res. 2009; 33(7):924-8.
- [85]Dengler MA, Staiger AM, Gutekunst M, Hofmann U, Doszczak M, Scheurich P et al.. Oncogenic stress induced by acute hyper-activation of Bcr-Abl leads to cell death upon induction of excessive aerobic glycolysis. PLoS One. 2011; 6(9):e25139.
- [86]Li Y, Guo Y, Tang J, Jiang J, Chen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin. 2014; 46(8):629-40.
- [87]Kharabi Masouleh B, Geng H, Hurtz C, Chan LN, Logan AC, Chang MS et al.. Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2014; 111(21):E2219-28.
- [88]Swaminathan S, Huang C, Geng H, Chen Z, Harvey R, Kang H et al.. BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint. Nat Med. 2013; 19(8):1014-22.
- [89]Miller GD, Bruno BJ, Lim CS. Resistant mutations in CML and Ph(+)ALL—role of ponatinib. Biologics. 2014; 8:243-54.
- [90]Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M et al.. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol. 2009; 27(31):5175-81.
- [91]Laurenti E, Doulatov S, Zandi S, Plumb I, Chen J, April C et al.. The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment. Nat Immunol. 2013; 14(7):756-63.
- [92]van Galen P, Kreso A, Mbong N, Kent DG, Fitzmaurice T, Chambers JE et al.. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature. 2014; 510(7504):268-72.
- [93]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001; 414(6859):105-11.
- [94]Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 2005; 15(9):494-501.
- [95]Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL et al.. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood. 2003; 101(12):4701-7.
- [96]Holtz M, Forman SJ, Bhatia R. Growth factor stimulation reduces residual quiescent chronic myelogenous leukemia progenitors remaining after imatinib treatment. Cancer Res. 2007; 67(3):1113-20.
- [97]Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K et al.. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2013; 73(6):1993-2002.
- [98]Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW et al.. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem. 2012; 55(16):7193-207.
- [99]Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A et al.. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood. 2011; 117(4):1311-4.
- [100]Volkmann K, Lucas JL, Vuga D, Wang X, Brumm D, Stiles C et al.. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J Biol Chem. 2011; 286(14):12743-55.
- [101]Mimura N, Fulciniti M, Gorgun G, Tai YT, Cirstea D, Santo L et al.. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood. 2012; 119(24):5772-81.
- [102]Cross BC, Bond PJ, Sadowski PG, Jha BK, Zak J, Goodman JM et al.. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci U S A. 2012; 109(15):E869-78.
- [103]Tsai YC, Weissman AM. The unfolded protein response, degradation from endoplasmic reticulum and cancer. Genes Cancer. 2010; 1(7):764-78.
- [104]Moreau P, Attal M, Facon T. Frontline therapy of multiple myeloma. Blood. 2015; 125(20):3076-84.
- [105]Niewerth D, Jansen G, Assaraf YG, Zweegman S, Kaspers GJ, Cloos J. Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resist Updat. 2015; 18:18-35.
- [106]Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR et al.. Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood. 2008; 112(6):2489-99.
- [107]Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins. J Cell Biol. 1998; 143(7):1883-98.
- [108]Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, Stewart AK, Reece DE et al.. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell. 2013; 24(3):289-304.
- [109]Kusio-Kobialka M. Pro-survival signaling pathways activated by BCR-ABL oncogene in chronic myelogenous leukemia cells: the role of the perk-EIF2alpha signal path and acetylation of p53. Postepy Biochem. 2014; 60(4):401-6.
- [110]Ermakova SP, Kang BS, Choi BY, Choi HS, Schuster TF, Ma WY et al.. (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res. 2006; 66(18):9260-9.
- [111]Uckun FM, Qazi S, Ozer Z, Garner AL, Pitt J, Ma H et al.. Inducing apoptosis in chemotherapy-resistant B-lineage acute lymphoblastic leukaemia cells by targeting HSPA5, a master regulator of the anti-apoptotic unfolded protein response signalling network. Br J Haematol. 2011; 153(6):741-52.
- [112]Liu Y, Steiniger SC, Kim Y, Kaufmann GF, Felding-Habermann B, Janda KD. Mechanistic studies of a peptidic GRP78 ligand for cancer cell-specific drug delivery. Mol Pharm. 2007; 4(3):435-47.
- [113]Rosenes Z, Mulhern TD, Hatters DM, Ilag LL, Power BE, Hosking C et al.. The anti-cancer IgM monoclonal antibody PAT-SM6 binds with high avidity to the unfolded protein response regulator GRP78. PLoS One. 2012; 7(9):e44927.
- [114]Rasche L, Duell J, Morgner C, Chatterjee M, Hensel F, Rosenwald A et al.. The natural human IgM antibody PAT-SM6 induces apoptosis in primary human multiple myeloma cells by targeting heat shock protein GRP78. PLoS One. 2013; 8(5):e63414.
- [115]Rasche L, Duell J, Castro IC, Dubljevic V, Chatterjee M, Knop S et al.. GRP78-directed immunotherapy in relapsed or refractory multiple myeloma—results from a phase 1 trial with the monoclonal immunoglobulin M antibody PAT-SM6. Haematologica. 2015; 100(3):377-84.
- [116]Kriss CL, Pinilla-Ibarz JA, Mailloux AW, Powers JJ, Tang CH, Kang CW et al.. Overexpression of TCL1 activates the endoplasmic reticulum stress response: a novel mechanism of leukemic progression in mice. Blood. 2012; 120(5):1027-38.
- [117]Carlini L, Manley S. Live intracellular super-resolution imaging using site-specific stains. ACS Chem Biol. 2013; 8(12):2643-8.
- [118]Sanches M, Duffy NM, Talukdar M, Thevakumaran N, Chiovitti D, Canny MD et al.. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors. Nat Commun. 2014; 5:4202.
- [119]Smith AD, Roda D, Yap TA. Strategies for modern biomarker and drug development in oncology. J Hematol Oncol. 2014; 7(1):70.
- [120]Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 2009; 186(3):323-31.
- [121]Tam AB, Koong AC, Niwa M. Ire1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD. Cell Rep. 2014; 9(3):850-8.
- [122]Wang FM, Galson DL, Roodman GD, Ouyang H. Resveratrol triggers the pro-apoptotic endoplasmic reticulum stress response and represses pro-survival XBP1 signaling in human multiple myeloma cells. Exp Hematol. 2011; 39(10):999-1006.