期刊论文详细信息
Journal of Neuroinflammation
4′-O-methylhonokiol increases levels of 2-arachidonoyl glycerol in mouse brain via selective inhibition of its COX-2-mediated oxygenation
Jürg Gertsch1  Roch-Philippe Charles1  Wolfgang Schuehly2  Vanessa Petrucci1  Maria Salomé Gachet1  Andrea Chicca1 
[1]Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, Bern, CH-3012, Switzerland
[2]Institute of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, Graz, 8010, Austria
关键词: Magnolia grandiflora;    2-arachidonoyl glycerol;    Endocannabinoid system;    Partial agonist;    Polypharmacology;    CB2 receptor;    COX-2;    Endocannabinoids;    4′-O-methylhonokiol;   
Others  :  1227089
DOI  :  10.1186/s12974-015-0307-7
 received in 2015-02-06, accepted in 2015-04-24,  发布年份 2015
PDF
【 摘 要 】

Background and purpose

4′-O-methylhonokiol (MH) is a natural product showing anti-inflammatory, anti-osteoclastogenic, and neuroprotective effects. MH was reported to modulate cannabinoid CB2 receptors as an inverse agonist for cAMP production and an agonist for intracellular [Ca2+]. It was recently shown that MH inhibits cAMP formation via CB2 receptors. In this study, the exact modulation of MH on CB2 receptor activity was elucidated and its endocannabinoid substrate-specific inhibition (SSI) of cyclooxygenase-2 (COX-2) and CNS bioavailability are described for the first time.

Methods

CB2 receptor modulation ([35S]GTPγS, cAMP, and β-arrestin) by MH was measured in hCB2-transfected CHO-K1 cells and native conditions (HL60 cells and mouse spleen). The COX-2 SSI was investigated in RAW264.7 cells and in Swiss albino mice by targeted metabolomics using LC-MS/MS.

Results

MH is a CB2 receptor agonist and a potent COX-2 SSI. It induced partial agonism in both the [35S]GTPγS binding and β-arrestin recruitment assays while being a full agonist in the cAMP pathway. MH selectively inhibited PGE2 glycerol ester formation (over PGE2) in RAW264.7 cells and significantly increased the levels of 2-AG in mouse brain in a dose-dependent manner (3 to 20 mg kg−1) without affecting other metabolites. After 7 h from intraperitoneal (i.p.) injection, MH was quantified in significant amounts in the brain (corresponding to 200 to 300 nM).

Conclusions

LC-MS/MS quantification shows that MH is bioavailable to the brain and under condition of inflammation exerts significant indirect effects on 2-AG levels. The biphenyl scaffold might serve as valuable source of dual CB2 receptor modulators and COX-2 SSIs as demonstrated by additional MH analogs that show similar effects. The combination of CB2 agonism and COX-2 SSI offers a yet unexplored polypharmacology with expected synergistic effects in neuroinflammatory diseases, thus providing a rationale for the diverse neuroprotective effects reported for MH in animal models.

【 授权许可】

   
2015 Chicca et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150927093218500.pdf 1148KB PDF download
Figure 8. 63KB Image download
Figure 7. 92KB Image download
Figure 6. 52KB Image download
Figure 5. 36KB Image download
Figure 4. 40KB Image download
Figure 2. 236KB Image download
Figure 2. 74KB Image download
Figure 1. 15KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 2.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Schuehly W, Paredes JM, Kleyer J, Huefner A, Anavi-Goffer S, Raduner S, et al.: Mechanisms of osteoclastogenesis inhibition by a novel class of biphenyl-type cannabinoid CB (2) receptor inverse agonists. Chem Biol. 2011, 18:1053-64.
  • [2]Lee YJ, Choi DY, Choi IS, Kim KH, Kim YH, Kim HM, et al.: Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. J Neuroinflammation. 2012, 9:35. BioMed Central Full Text
  • [3]Lee YJ, Choi DY, Lee YK, Lee YM, Han SB, Kim YH, et al.: 4-O-methylhonokiol prevents memory impairment in the Tg2576 transgenic mice model of Alzheimer’s disease via regulation of β-secretase activity. J Alzheimers Dis. 2012, 29:677-90.
  • [4]Jung YY, Lee YJ, Choi DY, Hong JT: Amelioration of cognitive dysfunction in APP/ps1 double transgenic mice by long-term treatment of 4-O-Methylhonokiol. Biomol Ther (Seoul). 2014, 22:232-8.
  • [5]Gertsch J, Anavi-Goffer S: Methylhonokiol attenuates neuroinflammation: a role for cannabinoid receptors? J Neuroinflammation. 2012, 9:135. BioMed Central Full Text
  • [6]Kim HS, Ryu HS, Kim JS, Kim YG, Lee HK, Jung JK, et al. Validation of cyclooxygenase-2 as a direct anti-inflammatory target of 4-O-methylhonokiol in zymosan-induced animal models. Arch Pharm Res. 2014. In press.
  • [7]Schühly W, Hüfner A, Pferschy-Wenzig EM, Prettner E, Adams M, Bodensieck A, et al.: Design and synthesis of ten biphenyl-neolignan derivatives and their in vitro inhibitory potency against cyclooxygenase-1/2 activity and 5-lipoxygenase-mediated LTB4-formation. Bioorg Med Chem. 2009, 17:4459-65.
  • [8]Baur R, Schuehly W, Sigel E: Moderate concentrations of 4-O-methylhonokiol potentiate GABAA receptor currents stronger than honokiol. Biochim Biophys Acta. 2014, 1840:3017-21.
  • [9]Fuchs A, Rempel V, Müller CE: The natural product magnolol as a lead structure for the development of potent cannabinoid receptor agonists. PLoS One. 2013, 8:e77739.
  • [10]Kozak KR, Crews BC, Morrow JD, Wang LH, Ma YH, Weinander R, et al.: Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides. J Biol Chem. 2002, 277:44877-85.
  • [11]Kozak KR, Gupta RA, Moody JS, Ji C, Boeglin WE, DuBois RN, et al.: 15-Lipoxygenase metabolism of 2-arachidonylglycerol. Generation of a peroxisome proliferator-activated receptor alpha agonist. J Biol Chem 2002, 277:23278-86.
  • [12]Snider NT, Walker VJ, Hollenberg PF: Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol Rev. 2010, 62:136-54.
  • [13]Weber A, Ni J, Ling KH, Acheampong A, Tang-Liu DD, Burk R, et al.: Formation of prostamides from anandamide in FAAH knockout mice analyzed by HPLC with tandem mass spectrometry. J Lipid Res. 2004, 45:757-63.
  • [14]Duggan KC, Hermanson DJ, Musee J, Prusakiewicz JJ, Scheib JL, Carter BD, et al.: (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nat Chem Biol 2011, 7:803-9.
  • [15]Gatta L, Piscitelli F, Giordano C, Boccella S, Lichtman A, Maione S, et al.: Discovery of prostamide F2α and its role in inflammatory pain and dorsal horn nociceptive neuron hyperexcitability. PLoS One. 2012, 7:e31111.
  • [16]Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P: COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci U S A. 1996, 93:2317-21.
  • [17]Yoshikawa K, Takei S, Hasegawa-Ishii S, Chiba Y, Furukawa A, Kawamura N, et al.: Preferential localization of prostamide/prostaglandin F synthase in myelin sheaths of the central nervous system. Brain Res. 2011, 1367:22-32.
  • [18]Ritter JK, Li C, Xia M, Poklis JL, Lichtman AH, Abdullah RA, et al.: Production and actions of the anandamide metabolite prostamide E2 in the renal medulla. J Pharmacol Exp Ther. 2012, 342:770-9.
  • [19]Liang Y, Woodward DF, Guzman VM, Li C, Scott DF, Wang JW, et al.: Identification and pharmacological characterization of the prostaglandin FP receptor and FP receptor variant complexes. Br J Pharmacol. 2008, 154:1079-93.
  • [20]Ligresti A, Martos J, Wang J, Guida F, Allarà M, Palmieri V, et al.: Prostamide F (2) α receptor antagonism combined with inhibition of FAAH may block the pro-inflammatory mediators formed following selective FAAH inhibition. Br J Pharmacol. 2014, 171:1408-19.
  • [21]Hermanson DJ, Hartley ND, Gamble-George J, Brown N, Shonesy BC, Kingsley PJ, et al.: Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation. Nat Neurosci. 2013, 16:1291-8.
  • [22]Chicca A, Caprioglio D, Minassi A, Petrucci V, Appendino G, Taglialatela-Scafati O, et al.: Functionalization of β-caryophyllene generates novel polypharmacology in the endocannabinoid system. ACS Chem Biol. 2014, 9:1499-507.
  • [23]Chicca A, Marazzi J, Gertsch J: The antinociceptive triterpene β-amyrin inhibits 2-arachidonoylglycerol (2-AG) hydrolysis without directly targeting cannabinoid receptors. Br J Pharmacol. 2002, 167:1596-608.
  • [24]Rosati O, Messina F, Pelosi A, Curini M, Petrucci V, Gertsch J, et al.: One-pot heterogeneous synthesis of Δ (3)-tetrahydrocannabinol analogues and xanthenes showing differential binding to CB (1) and CB (2) receptors. Eur J Med Chem. 2014, 85:77-86.
  • [25]Gachet MS, Rhyn P, Bosch OG, Quednow BB, Gertsch J: A quantitiative LC-MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N-acylethanolamines and steroids in human plasma. J Chromatogr, B. 2015, 976–977:6-18.
  • [26]Seifert R, Wenzel-Seifert K, Gether U, Kobilka BK: Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations. J Pharmacol Exp Ther. 2001, 297:1218-26.
  • [27]Munro S, Thomas KL, Abu-Shaar M: Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993, 365:61-5.
  • [28]Marini P, Cascio MG, King A, Pertwee RG, Ross RA: Characterization of cannabinoid receptor ligands in tissues natively expressing cannabinoid CB2 receptors. Br J Pharmacol. 2013, 169:887-99.
  • [29]Kenakin T: Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol. 2007, 72:1393-13401.
  • [30]Mancini I, Brusa R, Quadrato G, Foglia C, Scandroglio P, Silverman LS, et al.: Constitutive activity of cannabinoid-2 (CB2) receptors plays an essential role in the protean agonism of (+) AM1241 and L768242. Br J Pharmacol. 2009, 158:382-91.
  • [31]Yao BB, Mukherjee S, Fan Y, Garrison TR, Daza AV, Grayson GK, et al.: In vitro pharmacological characterization of AM1241: a protean agonist at the cannabinoid CB2 receptor? Br J Pharmacol. 2006, 149:145-54.
  • [32]Bolognini D, Cascio MG, Parolaro D, Pertwee RG: AM630 behaves as a protean ligand at the human cannabinoid CB2 receptor. Br J Pharmacol. 2012, 165:2561-74.
  • [33]Silvestri C, Martella A, Poloso NJ, Piscitelli F, Capasso R, Izzo A, et al.: Anandamide-derived prostamide F2α negatively regulates adipogenesis. J Biol Chem. 2014, 288:23307-21.
  • [34]Nomura DK, Morrison BE, Blankman JL, Long JZ, Kinsey SG, Marcondes MC, et al.: Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science. 2011, 334:809-13.
  • [35]Cabrera R, Korte SM, Lentjes EG, Romijn F, Schönbaum E, De Nicola A, et al.: The amount of free corticosterone is increased during lipopolysaccharide-induced fever. Life Sci. 2002, 66:553-62.
  • [36]Lee YK, Choi IS, Ban JO, Lee HJ, Lee US, Han SB, et al.: 4-O-methylhonokiol attenuated β-amyloid-induced memory impairment through reduction of oxidative damages via inactivation of p38 MAP kinase. J Nutr Biochem. 2011, 22:476-86.
  • [37]Chicca A, Marazzi J, Nicolussi S, Gertsch J: Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem. 2012, 287:34660-82.
  • [38]Zaki PA, Keith DE Jr, Brine GA, Carroll FI, Evans CJ: Ligand-induced changes in surface mu-opioid receptor number: relationship to G protein activation? J Pharmacol Exp Ther. 2000, 292:1127-34.
  • [39]Felder CC, Joyce KE, Briley EM, Glass M, Mackie KP, Fahey KJ, et al.: LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther. 1998, 284:291-7.
  • [40]Bauer M, Chicca A, Tamborrini M, Eisen D, Lerner R, Lutz B, et al.: Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J Biol Chem. 2012, 287:36944-9667.
  • [41]Lauckner JE, Hille B, Mackie K: The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci U S A. 2005, 102:19144-9.
  • [42]Chen R, Zhang J, Fan N, Teng ZQ, Wu Y, Yang H, et al.: Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling. Cell. 2014, 155:1154-65.
  • [43]Reiter E, Ahn S, Shukla AK, Lefkowitz RJ: Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol. 2012, 52:179-97.
  • [44]Kenakin T, Christopoulos A: Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov. 2013, 12:205-16.
  • [45]Kleyer J, Nicolussi S, Taylor P, Simonelli D, Furger E, Anderle P, et al.: Cannabinoid receptor trafficking in peripheral cells is dynamically regulated by a binary biochemical switch. Biochem Pharmacol. 2012, 83:1393-412.
  • [46]Marazzi J, Kleyer J, Paredes JM, Gertsch J: Endocannabinoid content in fetal bovine sera - unexpected effects on mononuclear cells and osteoclastogenesis. J Immunol Methods. 2011, 373:219-28.
  • [47]Kozak KR, Crews BC, Ray JL, Tai HH, Morrow JD, Marnett LJ: Metabolism of prostaglandin glycerol esters and prostaglandin ethanolamides in vitro and in vivo. J Biol Chem. 2001, 276:36993-8.
  • [48]Savinainen JR, Kansanen E, Pantsar T, Navia-Paldanius D, Parkkari T, Lehtonen M, et al.: Robust hydrolysis of prostaglandin glycerol esters by human monoacylglycerol lipase (MAGL). Mol Pharmacol. 2014, 86:522-35.
  • [49]Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, et al.: Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009, 5:37-44.
  • [50]Marrs WR, Blankman JL, Horne EA, Thomazeau A, Lin YH, Coy J, et al.: The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat Neurosci. 2010, 13:951-7.
  • [51]Du H, Chen X, Zhang J, Chen C: Inhibition of COX-2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-γ. Br J Pharmacol. 2011, 163:1533-49.
  • [52]Font-Nieves M, Sans-Fons MG, Gorina R, Bonfill-Teixidor E, Salas-Pérdomo A, Márquez-Kisinousky L, et al.: Induction of COX-2 enzyme and down-regulation of COX-1 expression by lipopolysaccharide (LPS) control prostaglandin E2 production in astrocytes. J Biol Chem. 2012, 287:6454-68.
  • [53]Woodward DF, Carling RW, Cornell CL, Fliri HG, Martos JL, Pettit SN, et al.: The pharmacology and therapeutic relevance of endocannabinoid derived cyclo-oxygenase (COX)-2 products. Pharmacol Ther. 2008, 120:71-80.
  • [54]Kim J, Alger BE: Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus. Nat Neurosci. 2004, 7:697-8.
  • [55]Straiker A, Wager-Miller J, Hu SS, Blankman JL, Cravatt BF, Mackie K: COX-2 and fatty acid amide hydrolase can regulate the time course of depolarization-induced suppression of excitation. Br J Pharmacol. 2011, 164:1672-83.
  • [56]Han H, Jung JK, Han SB, Nam SY, Oh KW, Hong JT: Anxiolytic-like effects of 4-O-methylhonokiol isolated from Magnolia officinalis through enhancement of GABAergic transmission and chloride influx. J Med Food. 2011, 14:724-31.
  • [57]Yu HE, Oh SJ, Ryu JK, Kang JS, Hong JT, Jung JK, et al.: Pharmacokinetics and metabolism of 4-O-methylhonokiol in rats. Phytother Res. 2014, 28:568-78.
  • [58]Ashton JC, Glass M: The cannabinoid CB2 receptor as a target for inflammation-dependent neurodegeneration. Curr Neuropharmacol 2007, 5(2):73-80.
  • [59]Zotova E, Nicoll JA, Kalaria R, Holmes C, Boche D: Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimers Res Ther 2010, 2(1):1.
  • [60]Rom S, Persidsky Y: Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation. J Neuroimmune Pharmacol. 2013, 8:608-20.
  • [61]Gowran A, Noonan J, Campbell VA: The multiplicity of action of cannabinoids: implications for treating neurodegeneration. CNS Neurosci Ther. 2011, 17:637-44.
  • [62]Aso E, Juvés S, Maldonado R, Ferrer I: CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AβPP/PS1 mice. J Alzheimers Dis 2013, 35(4):847-58.
  • [63]Carreras I, McKee AC, Choi JK, Aytan N, Kowall NW, Jenkins BG, et al.: R-flurbiprofen improves tau, but not Aß pathology in a triple transgenic model of Alzheimer’s disease. Brain Res. 2013, 1541:115-27.
  • [64]Kukar T, Prescott S, Eriksen JL, Holloway V, Murphy MP, Koo EH, et al.: Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice. BMC Neurosci. 2007, 8:54. BioMed Central Full Text
  • [65]Schmitz K, de Bruin N, Bishay P, Männich J, Häussler A, Altmann C, et al.: R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice. EMBO Mol Med. 2014, 6:1398-422.
  文献评价指标  
  下载次数:23次 浏览次数:23次