期刊论文详细信息
Cell & Bioscience
Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions
Tao Weitao1  Kara Phipps1  Annie Wolfe1 
[1] Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
关键词: Phages;    Bacteria;    SOS response;    Recombination;    Replication;    DNA repair;    DNA translocases;    AAA+ proteins;   
Others  :  790442
DOI  :  10.1186/2045-3701-4-31
 received in 2014-02-06, accepted in 2014-06-13,  发布年份 2014
PDF
【 摘 要 】

DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

【 授权许可】

   
2014 Wolfe et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705000526524.pdf 1095KB PDF download
Figure 5. 57KB Image download
Figure 4. 69KB Image download
Figure 3. 94KB Image download
Figure 2. 79KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Radman M, Sherman S, Miller M, Lawrence C, Tabor WH, Springfield IL, Thomas CC: Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. Molecular and Environmental aspects of mutagenesis 1974, 128-142.
  • [2]Bridges BA: Error-prone DNA repair and translesion DNA synthesis: II: The inducible SOS hypothesis. DNA Repair 2005, 4:725-739.
  • [3]Kunau WH, Beyer A, Franken T, Götte K, Marzioch M, Saidowsky J, Skaletz-Rorowski A, Wiebel FF: Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: Forward and reversed genetics. Biochimie 1993, 75:209-224.
  • [4]Iyer LM, Makarova KS, Koonin EV, Aravind L: Comparative genomics of the FtsK–HerA superfamily of pumping ATPases: Implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 2004, 32:5260-5279.
  • [5]Johnson JE, Chiu W: DNA packaging and delivery machines in tailed bacteriophages. Curr Opin Struct Biol 2007, 17:237-243.
  • [6]Steven AC, Heymann JB, Cheng N, Trus BL, Conway JF: Virus maturation: Dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Curr Opin Struct Biol 2005, 15:227-236.
  • [7]Tao Y, Olson NH, Xu W, Anderson DL, Rossmann MG, Baker TS: Assembly of a tailed bacterial virus and its genome release studied in three dimensions. Cell 1998, 95:431-437.
  • [8]Ammelburg M, Frickey T, Lupas AN: Classification of AAA+ proteins. J Struct Biol 2006, 156:2-11.
  • [9]Martin A, Baker TA, Sauer RT: Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature 2005, 437:1115-1120.
  • [10]Guo P, Schwartz C, Haak J, Zhao Z: Discovery of a new motion mechanism of biomotors similar to the earth revolving around the sun without rotation. Virology 2013, 446:133-143.
  • [11]Guo P, Erickson S, Anderson D: A small viral RNA is required for in vitro packaging of bacteriophage phi29 DNA. Science 1987, 236:690-694.
  • [12]Schwartz C, Guo P: Ultrastable pRNA hexameric ring gearing hexameric phi29 DNA-packaging motor by revolving without rotating and coiling. Curr Opin Biotechnol 2013, 24:581-590.
  • [13]Guasch A, Pous J, Ibarra B, Gomis-Rüth FX, Valpuesta JM, Sousa N, Carrascosa JL, Coll M: Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage φ29 connector particle. J Mol Biol 2002, 315:663-676.
  • [14]Jimenez J, Santisteban A, Carazo JM, Carrascosa JL: Computer graphic display method for visualizing three-dimensional biological structures. Science 1986, 232:1113-1115.
  • [15]Kumar R, Grubmüller H: Elastic properties and heterogeneous stiffness of the phi29 motor connector channel. Biophys J 2014, 106:1338-1348.
  • [16]Schwartz C, De Donatis GM, Fang H, Guo P: The ATPase of the phi29 DNA packaging motor is a member of the hexameric AAA+ superfamily. Virology 2013, 443:20-27.
  • [17]Zhao Z, Khisamutdinov E, Schwartz C, Guo P: Mechanism of one-way traffic of hexameric Phi19 DNA packaging motor with four electropositive relaying layers facilitating antiparallel revolution. ACS Nano 2013, 7:4082-4092.
  • [18]Schwartz C, Fang H, Huang L, Guo P: Sequential action of ATPase, ATP, ADP, Pi and dsDNA in procapsid-free system to enlighten mechanism in viral dsDNA packaging. Nucleic Acids Res 2012, 40:2577-2586.
  • [19]Chen C, Guo P: Magnesium-induced conformational change of packaging RNA for procapsid recognition and binding during phage phi29 DNA encapsidation. J Virol 1997, 71:495-500.
  • [20]Moffitt JR, Chemla YR, Aathavan K, Grimes S, Jardine PJ, Anderson DL, Bustamante C: Intersubunit coordination in a homomeric ring ATPase. Nature 2009, 457:446-450.
  • [21]Guo P, Peterson C, Anderson D: Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage φ29. J Mol Biol 1987, 197:229-236.
  • [22]Sun S, Kondabagil K, Draper B, Alam TI, Bowman VD, Bowman VD, Zhang Z, Hegde S, Fokine A, Rossmann MG, Rao VB: The structure of the Phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces. Cell 2008, 135:251-1262.
  • [23]Massey TH, Mercogliano CP, Yates J, Sherratt DJ, Löwe J: Double-stranded DNA translocation: Structure and mechanism of hexameric FtsK. Mol Cell 2006, 23:457-469.
  • [24]Schwartz C, De Donatis GM, Zhang H, Fang H, Guo P: Revolution rather than rotation of AAA+ hexameric phi29 nanomotor for viral dsDNA packaging without coiling. Virology 2013, 443:28-39.
  • [25]Janion C: Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int J Biol Sci 2008, 23:338-344.
  • [26]Weigle J: Induction of mutation in a bacterial virus. Proc Natl Acad Sci U S A 1953, 39:628-636.
  • [27]Borek E, Ryan A: The transfer of irradiation elicited induction in a lysogenic organism. Proc Natl Acad Sci 1958, 44:374-377.
  • [28]Hertman I, Luria SE: Transduction studies on the role of a rec+ gene in the ultraviolet induction of prophage lambda. J Mol Biol 1967, 23:117-133.
  • [29]Defais M, Fauquet P, Radman M, Errera M: Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology 1971, 43:495-503.
  • [30]Craig NL, Roberts JW: Function of nucleoside triphosphate and polynucleotide in Escherichia coli recA protein-directed cleavage of phage lambda repressor. J Biol Chem 1981, 256:8039-8044.
  • [31]Witkin EM: Ultraviolet-induced mutation and DNA repair. Annu Rev Microbiol 1969, 23:487-514.
  • [32]Howard-Flanders P, Boyce RP, Theriot L: Three loci in Escerichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics 1966, 53:1119-1136.
  • [33]Little JW: Mechanism of specific LexA cleavage: Autodigestion and the role of RecA coprotease. Biochimie 1991, 73:411-421.
  • [34]Butala M, Žgur-Bertok D, Busby SJW: The bacterial LexA transcriptional repressor. Cell Mol Life Sci 2009, 66:82-93.
  • [35]Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC: Comparative gene expression profiles following UV exposure in wilde-type and SOS-deficient Escherichia coli. Genetics 2001, 158:41-64.
  • [36]de Henestrosa AR F, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R: Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 2000, 35:1560-1572.
  • [37]Little JW, Harper JE: Identification of the lexA gene product of Escherichia coli K-12. Proc Natl Acad Sci 1979, 76:6147-6151.
  • [38]Cox MM: Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 2007, 42:41-63.
  • [39]Chen Z, Yang H, Pavletich NP: Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 2008, 453:489-494.
  • [40]Erill I, Campoy S, Barbé J: Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007, 31:637-656.
  • [41]Demarre G, Galli E, Barre F-X: The FtsK Family of DNA Pumps. In DNA Helicases and DNA Motor Proteins. Edited by Spies M. New York: Springer; 2013:245-262.
  • [42]Bath J, Wu LJ, Errington J, Wang JC: Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 2000, 5493:995-997.
  • [43]Gomis-Ruth FX, Moncalian G, Perez-Luque R, Gonzalez A, Cabezon E, de la Cruz F, Coll M: The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 2001, 409:637-641.
  • [44]Zhang C, Tian B, Li S, Ao X, Dalgaard K, Gökce S, Liang Y, She Q: Genetic manipulation in Sulfolobus islandicus and functional analysis of DNA repair genes. Biochem Soc Trans 2013, 41:405-410.
  • [45]Itsathitphaisarn O: Wing Richard A, Eliason William K, Wang J, Steitz Thomas A: The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 2012, 151:267-277.
  • [46]Kaplan DL, Steitz TA: DnaB from Thermus aquaticus unwinds forked duplex DNA with an asymmetric tail length dependence. J Biol Chem 1999, 274:6889-6897.
  • [47]LeBowitz JH, McMacken R: The Escherichia coli dnaB replication protein is a DNA helicase. J Biol Chem 1986, 261:4738-4748.
  • [48]Shinagawa H, Iwasaki H: Processing the holliday junction in homologous recombination. Trends Biochem Sci 1996, 21:107-111.
  • [49]Begg KJ, Dewar SJ, Donachie WD: A new Escherichia coli cell division gene, ftsK. J Bacteriol 1995, 177:6211-6222.
  • [50]Diez AA, Farewell A, Nannmark U, Nyström T: A mutation in the ftsK gene of Escherichia coli affects cell-cell separation, stationary-phase survival, stress adaptation, and expression of the gene encoding the stress protein UspA. J Bacteriol 1997, 179:5878-5883.
  • [51]Wang L, Lutkenhaus J: FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol Microbiol 1998, 29:731-740.
  • [52]Dorazi R, Dewar SJ: The SOS promoter dinH is essential for ftsK transcription during cell division. Microbiology 2000, 146:2891-2899.
  • [53]Donachie WD: FtsK: Maxwell’s demon? Mol Cell 2002, 9:206-207.
  • [54]Sherratt DJ, Lau IF: Barre F-Xa: Chromosome segregation. Curr Opin Microbiol 2001, 4:653-659.
  • [55]Recchia GD, Sherratt DJ: Conservation of xer site-specific recombination genes in bacteria. Mol Microbiol 1999, 34:1146-1148.
  • [56]Blakely G, Colloms S, May G, Burke M, Sherratt D: Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 1991, 3:789-798.
  • [57]Blakely G, May G, McCulloch R, Arciszewska LK, Burke M, Lovett ST, Sherratt DJ: Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 1993, 75:351-361.
  • [58]Colloms SD, Sykora P, Szatmari G, Sherratt DJ: Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol 1990, 172:6973-6980.
  • [59]Kuempel PL, Henson JM, Dircks L, Tecklenburg M, Lim DF: dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol 1991, 3:799-811.
  • [60]Aussel L, Barre F-X, Aroyo M, Stasiak A, Stasiak AZ, Sherratt D: FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 2002, 108:195-205.
  • [61]Massey TH, Aussel L, Barre F-X, Sherratt DJ: Asymmetric activation of Xer site-specific recombination by FtsK. EMBO Rep 2004, 5:399-404.
  • [62]Lau IF, Filipe SR, Søballe B, Økstad O-A, Barre F-X, Sherratt DJ: Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol Microbiol 2003, 49:731-743.
  • [63]Li Y, Youngren B, Sergueev K, Austin S: Segregation of the Escherichia coli chromosome terminus. Mol Microbiol 2003, 50:825-834.
  • [64]Ip SCY, Bregu M, Barre F-X, Sherratt DJ: Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J 2003, 22:6399-6407.
  • [65]Saleh OA, Perals C, Barre F-X, Allemand J-F: Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment. EMBO J 2004, 23:2430-2439.
  • [66]Pease PJ, Levy O, Cost GJ, Gore J, Ptacin JL, Sherratt D, Bustamante C, Cozzarelli NR: Sequence-directed DNA translocation by purified FtsK. Science 2005, 307:586-590.
  • [67]Barre F-X, Aroyo M, Colloms SD, Helfrich A, Cornet F, Sherratt DJ: FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. Genes Dev 2000, 14:2976-2988.
  • [68]Yu X-C, Weihe EK, Margolin W: Role of the C terminus of FtsK in Escherichia coli chromosome segregation. J Bacteriol 1998, 180:6424-6428.
  • [69]Crozat E, Grainge I: FtsK DNA translocase: the fast motor that knows where it’s going. ChemBio Chem 2010, 11:2232-2243.
  • [70]Crozat E, Meglio A, Allemand J-F, Chivers CE, Howarth M, Vénien-Bryan C, Grainge I, Sherratt DJ: Separating speed and ability to displace roadblocks during DNA translocation by FtsK. EMBO J 2010, 29:1423-1433.
  • [71]Holliday R: The induction of mitotic recombination by mitomycin C in ustilago and saccharomyces. Genetics 1964, 50:323-335.
  • [72]West SC: Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet 1997, 31:213-244.
  • [73]Benson F, Illing G, Sharples G, Lloyd R: Nucleotide sequencing of the ruv region of Escherichia coli K-12 reveals a LexA regulated operon encoding two genes. Nucleic Acids Res 1998, 16:1541-1549.
  • [74]Iwasaki H, Han Y-W, Okamoto T, Ohnishi T, Yoshikawa M, Yamada K, Toh H, Daiyasu H, Ogura T, Shinagawa H: Mutational analysis of the functional motifs of RuvB, an AAA+ class helicase and motor protein for Holliday junction branch migration. Mol Microbiol 2000, 36:528-538.
  • [75]Neuwald AF, Aravind L, Spouge JL, Koonin EV: AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 1999, 9:27-43.
  • [76]Han Y-W, Tani T, Hayashi M, Hishida T, Iwasaki H, Shinagawa H, Harada Y: Direct observation of DNA rotation during branch migration of Holliday junction DNA by Escherichia coli RuvA–RuvB protein complex. Proc Natl Acad Sci 2006, 103:11544-11548.
  • [77]Otsuji N, Iyehara H, Hideshima Y: Isolation and characterization of an Eschericia coli ruv mutant which forms nonseptate filaments after low doses of ultraviolet light irradiation. J Bacteriol 1974, 117:337-344.
  • [78]Sharples G, Benson F, Illing G, Lloyd R: Molecular and functional analysis of the ruv region of Escherichia coli K-12 reveals three genes involved in DNA repair and recombination. Mol Gen Genet 1990, 221:219-226.
  • [79]Shinagawa H, Makino K, Amemura M, Kimura S, Iwasaki H, Nakata A: Structure and regulation of the Escherichia coli ruv operon involved in DNA repair and recombination. J Bacteriol 1988, 170:4322-4329.
  • [80]Takahagi M, Iwasaki H, Nakata A, Shinagawa H: Molecular analysis of the Escherichia coli ruvC gene, which encodes a Holliday junction-specific endonuclease. J Bacteriol 1991, 173:5747-5753.
  • [81]Shurvinton CE, Lloyd RG: Damage to DNA induces expression of the ruv gene of Escherichia coli. Mol Gen Genet 1982, 185:352-355.
  • [82]Sharples GJ, Lloyd RG: Resolution of Holliday junctions in Escherichia coli: identification of the ruvC gene product as a 19-kilodalton protein. J Bacteriol 1991, 173:7711-7715.
  • [83]Shinagawa H: Molecular mechanisms of Holliday junction processing in Escherichia coli. Adv Biophys 1995, 31:49-65.
  • [84]Hiom K, West S: Branch migration during homologous recombination: assembly of a RuvAB-Holliday junction complex in vitro. Cell 1995, 80:787-793.
  • [85]Parsons C, Stasiak A, Bennett R, West S: Structure of a multisubunit complex that promotes DNA branch migration. Nature 1995, 374:375-378.
  • [86]Hiom K, West S: Characterisation of RuvAB-Holliday junction complexes by glycerol gradient sedimentation. Nucleic Acids Res 1995, 23:3621-3626.
  • [87]Hiom K, Tsaneva I, West S: The directionality of RuvAB-mediated branch migration: in vitro studies with three-armed junctions. Genes Cells 1996, 1:443-451.
  • [88]Whitby MC, Bolt EL, Chan SN, Lloyd RG: Interactions between RuvA and RuvC at Holliday junctions: inhibition of junction cleavage and formation of a RuvA-RuvC-DNA complex. J Mol Biol 1996, 264:878-890.
  • [89]Eggleston A, West S: Cleavage of holliday junctions by the Escherichia coli RuvABC complex. J Biol Chem 2000, 275:26467-26476.
  • [90]Adams D, Tsaneva I, West S: Dissociation of RecA filaments from duplex DNA by the RuvA and RuvB DNA repair proteins. Proc Natl Acad Sci U S A 1994, 91:9901-9905.
  • [91]Yu X, West S, Egelman E: Structure and subunit composition of the RuvAB-Holliday junction complex. J Mol Biol 1997, 266:217-222.
  • [92]Yamada K, Ariyoshi M, Morikawa K: Three-dimensional structural views of branch migration and resolution in DNA homologous recombination. Curr Opin Struct Biol 2004, 14:130-137.
  • [93]Yamada K, Miyata T, Tsuchiya D, Oyama T, Fujiwara Y, Ohnishi T, Iwasaki H, Shinagawa H, Ariyoshi M, Mayanagi K, Morikawa K: Crystal structure of the RuvA-RuvB complex: A structural basis for the Holliday junction migrating motor machinery. Mol Cell 2002, 10:671-681.
  • [94]Xie P: Model for RuvAB-mediated branch migration of Holliday junctions. J Theor Biol 2007, 249:566-573.
  • [95]Seigneur M, Bidnenko V, Ehrlich SD, Michel B: RuvAB acts at arrested replication forks. Cell 1998, 95:419-430.
  • [96]McGlynn P, Mahdi AA, Lloyd RG: Characterisation of the catalytically active form of RecG helicase. Nucleic Acids Res 2000, 28:2324-2332.
  • [97]Donaldson J, Courcelle C, Courcelle J: RuvABC is required to resolve holliday junctions that accumulate following replication on damaged templates in Escherichia coli. J Biol Chem 2006, 281:28811-28821.
  • [98]Abd Wahab S, Choi M, Bianco P: Characterization of the ATPase activity of RecG and RuvAB on model fork structures reveals insight into stalled DNA replication fork repair. J Biol Chem 2013, 288:26397-26409.
  • [99]Guo P: New and Notable: Biophysical studies reveal new evidence for one-way revolution mechanism of bacteriophage φ 29 DNA packaging motor. Biophys J 2014, 106:1-2.
  • [100]Guo P, Zhao Z, Haak J, Wang S, Wu D, Meng B, Weitao T: Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation. Biotechnol Adv 2014, 32:853-872.
  • [101]Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ: A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007, 130:797-810.
  • [102]Dwyer DJ, Kohanski MA, Collins JJ: Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol 2009, 12:482-489.
  • [103]Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K: Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 2013, 339:1213-1216.
  • [104]Chellappa ST, Maredia R, Phipps K, Haskins WE, Weitao T: Motility of Pseudomonas aeruginosa contributes to the SOS-inducible biofilm formation. Res Microbiol 2013, 164:1019-1027.
  • [105]Gotoh H, Gotoh H, Kasaraneni N, Devineni N, Dallo SF, Weitao T: SOS involvement in stress-inducible biofilm formation. Biofouling 2010, 26:603-611.
  • [106]Gotoh H, Zhang Y, Dallo SF, Hong S, Kasaraneni N, Weitao T: Pseudomonas aeruginosa under DNA replication inhibition tends to form biofilms via Arr. Res Microbiol 2008, 159:294-302.
  • [107]Maredia R, Devineni N, Lentz P, Dallo SF, Yu JJ, Guentzel N, Chambers J, Arulanandam B, Haskins WE, Weitao T: Vesiculation from Pseudomonas aeruginosa under SOS. ISRN Mol Biol 2012, 2012:402919.
  • [108]Weitao T: Multicellularity of a unicellular organism in response to DNA replication stress. Res Microbiol 2009, 160:87-88.
  • [109]Weitao T: Bacteria form biofilms against cancer metastasis. Medical Hypothesis 2009, 72:477-478.
  • [110]Devineni N, Maredia R, Weitao T: Can bacteria evolve anticancer phenotypes? In Bacteria and Cancer. Edited by Khan AA. Netherlands: Springer Science Publisher; 2012. 11:245-256
  • [111]Dallo SF, Weitao T: Bacteria under SOS evolve anticancer phenotypes. Infect Agents Canc 2010, 5:3.
  文献评价指标  
  下载次数:77次 浏览次数:34次