期刊论文详细信息
Clinical Proteomics
Proteomic analysis of purified protein derivative of Mycobacterium tuberculosis
Jayasuryan Narayana3  HC Harsha7  Akhilesh Pandey8  Aditi Chatterjee1  Vithal P Myneedu6  Anjali Ganjiwale3  Vinuth N Puttamallesh7  Jyoti Sharma1  Anil K Madugundu7  Gajanan J Sathe1  Raja Sekhar Nirujogi2  Satish Kumar4  Renu Verma3  Thottethodi Subrahmanya Keshava Prasad5 
[1] Manipal University, Madhav Nagar, Manipal 576 104, India;Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605 014, India;Microtest Innovations Pvt. Ltd., International Tech Park, Whitefield, Bangalore 560 066, India;Armed Forces Medical College, Pune 411 040, India;School of Biotechnology, KIIT University, Bhubaneswar, Odisha-751024, India;Department of Microbiology, LRS Institute of TB and RD, New Delhi 110 030, India;Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore 560 066, India;Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
关键词: Mantoux test;    LC-MS/MS;    Epitope;    Broad spectrum antibiotics;    Biomarker;   
Others  :  1026342
DOI  :  10.1186/1559-0275-10-8
 received in 2013-03-28, accepted in 2013-07-16,  发布年份 2013
PDF
【 摘 要 】

Background

Purified protein derivative (PPD) has been used for more than half a century as an antigen for the diagnosis of tuberculosis infection based on delayed type hypersensitivity. Although designated as “purified,” in reality, the composition of PPD is highly complex and remains ill-defined. In this report, high resolution mass spectrometry was applied to understand the complexity of its constituent components. A comparative proteomic analysis of various PPD preparations and their functional characterization is likely to help in short-listing the relevant antigens required to prepare a less complex and more potent reagent for diagnostic purposes.

Results

Proteomic analysis of Connaught Tuberculin 68 (PPD-CT68), a tuberculin preparation generated from M. tuberculosis, was carried out in this study. PPD-CT68 is the protein component of a commercially available tuberculin preparation, Tubersol, which is used for tuberculin skin testing. Using a high resolution LTQ-Orbitrap Velos mass spectrometer, we identified 265 different proteins. The identified proteins were compared with those identified from PPD M. bovis, PPD M. avium and PPD-S2 from previous mass spectrometry-based studies. In all, 142 proteins were found to be shared between PPD-CT68 and PPD-S2 preparations. Out of the 354 proteins from M. tuberculosis–derived PPDs (i.e. proteins in either PPD-CT68 or PPD-S2), 37 proteins were found to be shared with M. avium PPD and 80 were shared with M. bovis PPD. Alignment of PPD-CT68 proteins with proteins encoded by 24 lung infecting bacteria revealed a number of similar proteins (206 bacterial proteins shared epitopes with 47 PPD-CT68 proteins), which could potentially be involved in causing cross-reactivity. The data have been deposited to the ProteomeXchange with identifier PXD000377.

Conclusions

Proteomic and bioinformatics analysis of different PPD preparations revealed commonly and differentially represented proteins. This information could help in delineating the relevant antigens represented in various PPDs, which could further lead to development of a lesser complex and better defined skin test antigen with a higher specificity and sensitivity.

【 授权许可】

   
2013 Prasad et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140903114401160.pdf 378KB PDF download
Figure 3. 54KB Image download
Figure 2. 80KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Pineiro R, et al.: Tuberculin skin test in bacille Calmette-Guerin-vaccinated children: how should we interpret the results? Eur J Pediatr 2012, 171(11):1625-32.
  • [2]Targeted tuberculin testing and treatment of latent tuberculosis infection. American Thoracic Society MMWR Recomm Rep 2000, 49(RR-6):1-51.
  • [3]Brandt L, et al.: Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect Immun 2002, 70(2):672-8.
  • [4]Fine PE: Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995, 346(8986):1339-45.
  • [5]Shingadia D, Novelli V: The tuberculin skin test: a hundred, not out? Arch Dis Child 2008, 93(3):189-90.
  • [6]Lee E, Holzman RS: Evolution and current use of the tuberculin test. Clin Infect Dis 2002, 34(3):365-70.
  • [7]Burke DS: Of postulates and peccadilloes: Robert Koch and vaccine (tuberculin) therapy for tuberculosis. Vaccine 1993, 11(8):795-804.
  • [8]Al-Absi A, et al.: The decline of tuberculosis in Yemen: evaluation based on two nationwide tuberculin surveys. Int J Tuberc Lung Dis 2009, 13(9):1100-5.
  • [9]Yang H, Kruh-Garcia NA, Dobos KM: Purified protein derivatives of tuberculin - past, present, and future. FEMS Immunol Med Microbiol 2012, 66(3):273-80.
  • [10]Araujo Z, et al.: Comparison of serological responses in two different populations with pulmonary tuberculosis. Mem Inst Oswaldo Cruz 2008, 103(7):661-7.
  • [11]Amicosante M, et al.: Sensitivity and specificity of a multi-antigen ELISA test for the serological diagnosis of tuberculosis. Int J Tuberc Lung Dis 1999, 3(8):736-40.
  • [12]Hwang PH, Kim JS: PPD-specific IgG and IgG subclasses in the sera of pulmonary tuberculosis patients. J Korean Med Sci 1993, 8(1):1-9.
  • [13]Stavri HR, et al.: Prospective Comparison of Two Brands of Tuberculin Skin Tests and Quantiferon-TB Gold in-tube Assay Performances for Tuberculosis Infection in Hospitalized Children. Maedica (Buchar) 2010, 5(4):271-6.
  • [14]Buddle BM, et al.: Use of ESAT-6 in the interferon-gamma test for diagnosis of bovine tuberculosis following skin testing. Vet Microbiol 2001, 80(1):37-46.
  • [15]Buddle BM, et al.: Differentiation between Mycobacterium bovis BCG-vaccinated and M. bovis-infected cattle by using recombinant mycobacterial antigens. Clin Diagn Lab Immunol 1999, 6(1):1-5.
  • [16]Yassin M, et al.: Added value of TST, IGRAS and IP-10 to identify children with TB infection. Eur Respir J 2012, 41(3):644-648.
  • [17]Herrera V, et al.: Clinical application and limitations of interferon-gamma release assays for the diagnosis of latent tuberculosis infection. Clin Infect Dis 2011, 52(8):1031-7.
  • [18]Huebner RE, Schein MF, Bass JB Jr: The tuberculin skin test. Clin Infect Dis 1993, 17(6):968-75.
  • [19]Borsuk S, et al.: Identification of proteins from tuberculin purified protein derivative (PPD) by LC-MS/MS. Tuberculosis (Edinb) 2009, 89(6):423-30.
  • [20]Harboe M: Antigens of PPD, old tuberculin, and autoclaved Mycobacterium bovis BCG studied by crossed immunoelectrophoresis. Am Rev Respir Dis 1981, 124(1):80-7.
  • [21]Narasimhan SK, et al.: Induced folding by chiral nonplanar aromatics. J Org Chem 2009, 74(18):7023-33.
  • [22]Rupp ME, Schultz AW Jr, Davis JC: Discordance between tuberculin skin test results with two commercial purified protein derivative preparations. J Infect Dis 1994, 169(5):1174-5.
  • [23]Lifson AR, et al.: Discrepancies in tuberculin skin test results with two commercial products in a population of intravenous drug users. J Infect Dis 1993, 168(4):1048-51.
  • [24]Guld J, et al.: Standardization of a new batch of purified tuberculin (PPD) intended for international use. Bull World Health Organ 1958, 19(5):845-951.
  • [25]Ussetti P, et al.: Tuberculin reactivity in the elderly. Comparison of PPD-RT23 and PPD-CT68. Enferm Infecc Microbiol Clin 1996, 14(2):80-5.
  • [26]Cho YS, et al.: Deciphering the proteome of the in vivo diagnostic reagent “purified protein derivative” from Mycobacterium tuberculosis. Proteomics 2012, 12(7):979-91.
  • [27]Kuwabara S, Tsumita T: Letter: Primary structure of tuberculin-active protein from tubercule bacilli. Jpn J Exp Med 1974, 44(1):129-32.
  • [28]Bardarov SS, et al.: Characterization of PPD protein antigens in whole cell lysates of Mycobacterium bovis BCG. FEMS Microbiol Lett 1990, 59(1–2):89-93.
  • [29]Kitaura H, Kinomoto M, Yamada T: Ribosomal protein L7 included in tuberculin purified protein derivative (PPD) is a major heat-resistant protein inducing strong delayed-type hypersensitivity. Scand J Immunol 1999, 50(6):580-7.
  • [30]Landi S: Preparation, Purification, and Stability of Tuberculin. Appl Microbiol 1963, 11:408-12.
  • [31]Wong HC, et al.: The solution structure of acyl carrier protein from Mycobacterium tuberculosis. J Biol Chem 2002, 277(18):15874-80.
  • [32]Elamin AA, et al.: The Mycobacterium tuberculosis Ag85A is a novel diacylglycerol acyltransferase involved in lipid body formation. Mol Microbiol 2011, 81(6):1577-92.
  • [33]Romero IC, et al.: Identification of promoter-binding proteins of the fbp A and C genes in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2010, 90(1):25-30.
  • [34]Cobb AJ, Frothingham R: The GroES antigens of Mycobacterium avium and Mycobacterium paratuberculosis. Vet Microbiol 1999, 67(1):31-5.
  • [35]Das Gupta T: B. Bandyopadhyay, and S.K. Das Gupta, Modulation of DNA-binding activity of Mycobacterium tuberculosis HspR by chaperones. Microbiology 2008, 154(Pt 2):484-90.
  • [36]Rho BS, et al.: Functional and structural characterization of a thiol peroxidase from Mycobacterium tuberculosis. J Mol Biol 2006, 361(5):850-63.
  • [37]Gudkov AT: The L7/L12 ribosomal domain of the ribosome: structural and functional studies. FEBS Lett 1997, 407(3):253-6.
  • [38]Reddy PV, et al.: Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection. J Bacteriol 2012, 194(3):567-75.
  • [39]Reddy MC, et al.: Crystal structures of Mycobacterium tuberculosis S-adenosyl-L-homocysteine hydrolase in ternary complex with substrate and inhibitors. Protein Sci 2008, 17(12):2134-44.
  • [40]Hall G, et al.: Structure of Mycobacterium tuberculosis thioredoxin C. Acta Crystallogr D: Biol Crystallogr 2006, 62(Pt 12):1453-7.
  • [41]Tsai MH, Saier MH Jr: Phylogenetic characterization of the ubiquitous electron transfer flavoprotein families ETF-alpha and ETF-beta. Res Microbiol 1995, 146(5):397-404.
  • [42]Hebert AM, et al.: DNA polymorphisms in the pepA and PPE18 genes among clinical strains of Mycobacterium tuberculosis: implications for vaccine efficacy. Infect Immun 2007, 75(12):5798-805.
  • [43]Lau Bonilla D, Dahl JL: The wag31 gene of Mycobacterium tuberculosis is positively regulated by the stringent response. FEMS Microbiol Lett 2011, 319(2):153-9.
  • [44]Geisbrecht BV, et al.: Design and optimization of a recombinant system for large-scale production of the MPT64 antigen from Mycobacterium tuberculosis. Protein Expr Purif 2006, 46(1):64-72.
  • [45]Ragas A, et al.: The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A. J Biol Chem 2007, 282(8):5133-42.
  • [46]Hovav AH, et al.: Aggravated infection in mice co-administered with Mycobacterium tuberculosis and the 27-kDa lipoprotein. Microbes Infect 2006, 8(7):1750-7.
  • [47]Cole ST, et al.: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393(6685):537-44.
  • [48]Gu S, et al.: Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol Cell Proteomics 2003, 2(12):1284-96.
  • [49]Wolfe LM, et al.: Proteomic definition of the cell wall of Mycobacterium tuberculosis. J Proteome Res 2010, 9(11):5816-26.
  • [50]Raman K, Yeturu K, Chandra N: targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2008, 2:109. BioMed Central Full Text
  • [51]Kunnath-Velayudhan S, et al.: Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci USA 2010, 107(33):14703-8.
  • [52]Fattorini L, et al.: Recombinant GroES in combination with CpG oligodeoxynucleotides protects mice against Mycobacterium avium infection. J Med Microbiol 2002, 51(12):1071-9.
  • [53]Hussain R, et al.: Immune profiling of leprosy and tuberculosis patients to 15-mer peptides of Mycobacterium leprae and M. tuberculosis GroES in a BCG vaccinated area: implications for development of vaccine and diagnostic reagents. Immunology 2004, 111(4):462-71.
  • [54]Pais TF, et al.: Analysis of T cells recruited during delayed-type hypersensitivity to purified protein derivative (PPD) versus challenge with tuberculosis infection. Immunology 1998, 95(1):69-75.
  • [55]Lemos JA, Giambiagi-Demarval M, Castro AC: Expression of heat-shock proteins in Streptococcus pyogenes and their immunoreactivity with sera from patients with streptococcal diseases. J Med Microbiol 1998, 47(8):711-5.
  • [56]Garufi G, Butler E, Missiakas D: ESAT-6-like protein secretion in Bacillus anthracis. J Bacteriol 2008, 190(21):7004-11.
  • [57]Geluk A, et al.: T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent M. tuberculosis infection but not with M. bovis BCG vaccination. Infect Immun 2007, 75(6):2914-21.
  • [58]Weldingh K, et al.: Assessing the serodiagnostic potential of 35 Mycobacterium tuberculosis proteins and identification of four novel serological antigens. J Clin Microbiol 2005, 43(1):57-65.
  • [59]Bahk YY, et al.: Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics 2004, 4(11):3299-307.
  • [60]Khera A, et al.: Elicitation of efficient, protective immune responses by using DNA vaccines against tuberculosis. Vaccine 2005, 23(48–49):5655-65.
  • [61]Manca C, et al.: Molecular cloning, purification, and serological characterization of MPT63, a novel antigen secreted by Mycobacterium tuberculosis. Infect Immun 1997, 65(1):16-23.
  • [62]Elhay MJ, Oettinger T, Andersen P: Delayed-type hypersensitivity responses to ESAT-6 and MPT64 from Mycobacterium tuberculosis in the guinea pig. Infect Immun 1998, 66(7):3454-6.
  • [63]He XY, et al.: Comparative proteome analysis of culture supernatant proteins of Mycobacterium tuberculosis H37Rv and H37Ra. Microbes Infect 2003, 5(10):851-6.
  • [64]Yang H, et al.: Three protein cocktails mediate delayed-type hypersensitivity responses indistinguishable from that elicited by purified protein derivative in the guinea pig model of Mycobacterium tuberculosis infection. Infect Immun 2011, 79(2):716-23.
  • [65]Wu X, et al.: Recombinant early secreted antigen target 6 protein as a skin test antigen for the specific detection of Mycobacterium tuberculosis infection. Clin Exp Immunol 2008, 152(1):81-7.
  • [66]Arend SM, et al.: Double-blind randomized Phase I study comparing rdESAT-6 to tuberculin as skin test reagent in the diagnosis of tuberculosis infection. Tuberculosis (Edinb) 2008, 88(3):249-61.
  • [67]Liu C, et al.: Expression and purification of immunologically reactive DPPD, a recombinant Mycobacterium tuberculosis skin test antigen, using Mycobacterium smegmatis and Escherichia coli host cells. Can J Microbiol 2004, 50(2):97-105.
  • [68]Pollock JM, et al.: Specific delayed-type hypersensitivity responses to ESAT-6 identify tuberculosis-infected cattle. J Clin Microbiol 2003, 41(5):1856-60.
  • [69]Campos-Neto A, et al.: Evaluation of DPPD, a single recombinant Mycobacterium tuberculosis protein as an alternative antigen for the Mantoux test. Tuberculosis (Edinb) 2001, 81(5–6):353-8.
  • [70]van Pinxteren LA, et al.: Diagnosis of tuberculosis based on the two specific antigens ESAT-6 and CFP10. Clin Diagn Lab Immunol 2000, 7(2):155-60.
  • [71]Colangeli R, et al.: MTSA-10, the product of the Rv3874 gene of Mycobacterium tuberculosis, elicits tuberculosis-specific, delayed-type hypersensitivity in guinea pigs. Infect Immun 2000, 68(2):990-3.
  • [72]Oettinger T, et al.: Mapping of the delayed-type hypersensitivity-inducing epitope of secreted protein MPT64 from Mycobacterium tuberculosis. Infect Immun 1995, 63(12):4613-8.
  • [73]Vizcaino JA, et al.: The Proteomics Identifications database: 2010 update. Nucleic Acids Res 2010, 38(Database issue):D736-42.
  • [74]Harsha HC, Molina H, Pandey A: Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc 2008, 3(3):505-16.
  • [75]Rappsilber J, Mann M, Ishihama Y: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2007, 2(8):1896-906.
  文献评价指标  
  下载次数:28次 浏览次数:1次