期刊论文详细信息
Clinical Epigenetics
Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health
Ivana Antonucci3  Valentina Gatta3  Patrizia Ballerini2  Marica Franzago1  Liborio Stuppia3 
[1] Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio University” Chieti-Pescara, Via dei Vestini 31, Chieti, 66013, Italy;Laboratory of Pharmacogenetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio University” Chieti-Pescara, Via dei Vestini 31, Chieti, 66013, Italy;Ce.S.I.-MeT, “G. d’Annunzio” University, Chieti-Pescara, Via dei Vestini 31, Chieti, 66013, Italy
关键词: Transgenerational effect;    DNA methylation;    Epigenetics;    Gametogenesis;    Male infertility;   
Others  :  1234342
DOI  :  10.1186/s13148-015-0155-4
 received in 2015-06-03, accepted in 2015-11-05,  发布年份 2015
PDF
【 摘 要 】

The correlation between epigenetics and human reproduction represents a very interesting field of study, mainly due to the possible transgenerational effects related to epigenetic modifications of male and female gametes. In the present review, we focused our attention to the role played by epigenetics on male reproduction, evidencing at least four different levels at which sperm epigenetic modifications could affect reproduction: (1) spermatogenesis failure; (2) embryo development; (3) outcome of assisted reproduction technique (ART) protocols, mainly as concerning genomic imprinting; and (4) long-term effects during the offspring lifetime. The environmental agents responsible for epigenetic modifications are also examined, suggesting that the control of paternal lifestyle prior to conception could represent in the next future a novel hot topic in the management of human reproduction.

【 授权许可】

   
2015 Stuppia et al.

【 预 览 】
附件列表
Files Size Format View
20151129031107787.pdf 1070KB PDF download
Fig. 2. 66KB Image download
Fig. 1. 89KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA: National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med 2012, 9:e1001356.
  • [2]Krausz C: Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab 2011, 25:271-85.
  • [3]Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C: Male infertility: role of genetic background. Reprod Biomed Online 2007, 14:734-45.
  • [4]Esteves SC: A clinical appraisal of the genetic basis in unexplained male infertility. J Hum Reprod Sci 2013, 6:176-82.
  • [5]Stuppia L, Gatta V, Calabrese G, Franchi PG, Morizio E, Bombieri C, et al.: A quarter of men with idiopathic oligo-azoospermia display chromosomal abnormalities and microdeletions of different types in interval 6 of Yq11. Hum Genet 1998, 102:566-70.
  • [6]Clementini E, Palka C, Iezzi I, Stuppia L, Guanciali-Franchi P, Tiboni GM: Prevalence of chromosomal abnormalities in 2078 infertile couples referred for assisted reproductive techniques. Hum Reprod 2005, 20:437-42.
  • [7]Stuppia L, Gatta V, Antonucci I, Giuliani R, Scioletti AP, Palka G: Genetic testing in couples undergoing assisted reproduction technique protocols. Expert Opin Med Diagn 2009, 3:571-83.
  • [8]McLachlan RI, O’Bryan MK: State of the art for genetic testing of infertile men. J Clin Endocrinol Metab 2010, 95:1013-24.
  • [9]O’Flynn O’Brien KL, Varghese AC, Agarwal A: The genetic causes of male factor infertility: a review. Fertil Steril 2010, 93:1-12.
  • [10]Kovac JR, Pastuszak AW, Lamb DJ: The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril 2013, 99:998-1007.
  • [11]Moro E, Ferlin A, Yen PH, Franchi PG, Palka G, Foresta C: Male infertility caused by a de novo partial deletion of the DAZ cluster on the Y chromosome. J Clin Endocrinol Metab 2000, 85:4069-73.
  • [12]Machev N, Saut N, Longepied G, Terriou P, Navarro A, Levy N, et al.: Sequence family variant loss from the AZFc interval of the human Y chromosome, but not gene copy loss, is strongly associated with male infertility. J Med Genet 2004, 41:814-25.
  • [13]Hucklenbroich K, Gromoll J, Heinrich M, Hohoff C, Nieschlag E, Simoni M: Partial deletions in the AZFc region of the Y chromosome occur in men with impaired as well as normal spermatogenesis. Hum Reprod 2005, 20:191-97.
  • [14]Rozen SG, Marszalek JD, Irenze K, Skaletsky H, Brown LG, Oates RD, et al.: AZFc deletions and spermatogenic failure: a population-based survey of 20,000 Y chromosomes. Am J Hum Genet 2012, 91:890-96.
  • [15]Previderé C, Stuppia L, Gatta V, Fattorini P, Palka G, Tyler-Smith C: Y-chromosomal DNA haplotype differences in control and infertile Italian subpopulations. Eur J Hum Genet 1999, 7:733-36.
  • [16]Paracchini S, Stuppia L, Gatta V, Palka G, Moro E, Foresta C, et al.: Y-chromosomal DNA haplotypes in infertile European males carrying Y-microdeletions. J Endocrinol Invest 2000, 23:671-76.
  • [17]Paracchini S, Stuppia L, Gatta V, De Santo M, Palka G, Tyler-Smith C: Relationship between Y-chromosomal DNA haplotype and sperm count in Italy. J Endocrinol Invest 2002, 25:993-95.
  • [18]Arredi B, Ferlin A, Speltra E, Bedin C, Zuccarello D, Ganz F, et al.: Y-chromosome haplogroups and susceptibility to azoospermia factor c microdeletion in an Italian population. J Med Genet 2007, 44:205-08.
  • [19]Rovio AT, Marchington DR, Donat S, Schuppe HC, Abel J, Fritsche E, et al.: Mutations at the mitochondrial DNA polymerase (POLG) locus associated with male infertility. Nat Genet 2001, 29:261-62.
  • [20]Brusco A, Michielotto C, Gatta V, Foresta C, Matullo G, Zeviani M, et al.: The polymorphic polyglutamine repeat in the mitochondrial DNA polymerase gamma gene is not associated with oligozoospermia. J Endocrinol Invest 2006, 29:1-4.
  • [21]Poongothai J: Mitochondrial DNA, polymerase gamma gene polymorphism is not associated with male infertility. J Assist Reprod Genet 2013, 30:1109-14.
  • [22]Krausz C, Giachini C, Lo Giacco D, Daguin F, Chianese C, Ars E, et al.: High resolution X chromosome-specific array-CGH detects new CNVs in infertile males. PLoS ONE 2012, 7:e44887.
  • [23]Chianese C, Gunning AC, Giachini C, Daguin F, Balercia G, Ars E, et al.: X chromosome-linked CNVs in male infertility: discovery of overall duplication load and recurrent, patient-specific gains with potential clinical relevance. PLoS ONE 2014, 9:e97746.
  • [24]Riggs AD, Martienssen RA, Russo VEA: Introduction. In Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1996.
  • [25]Cloud J: Why Your DNA Isn’t Your Destiny. 2010.
  • [26]Liyanage VR, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR: DNA modifications: function and applications in normal and disease States. Biology (Basel) 2014, 3:670-723.
  • [27]van Montfoort AP, Hanssen LL, de Sutter P, Viville S, Geraedts JP, de Boer P: Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update 2012, 18:171-97.
  • [28]Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R: Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 2000, 97:5237-5242.
  • [29]Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al.: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462:315-322.
  • [30]Ziller MJ, Muller F, Liao J, Zhang Y, Gu H, Bock C, et al.: Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 2011, 7:e1002389.
  • [31]Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, et al.: Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 2012, 8:e1002440.
  • [32]Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, et al.: Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 2012, 148:816-831.
  • [33]Ichiyanagi T, Ichiyanagi K, Miyake M, Sasaki H: Accumulation and loss of asymmetric non-CpG methylation during male germ-cell development. Nucleic Acids Res 2013, 41:738-45.
  • [34]Ye C, Li L: 5-hydroxymethylcytosine: a new insight into epigenetics in cancer. Cancer Biol Ther 2014, 15:10-5.
  • [35]Gan H, Wen L, Liao S, Lin X, Ma T, Liu J, et al.: Dynamics of 5-hydroxymethylcytosine during mouse spermatogenesis. Nat Commun 2013, 4:1995.
  • [36]Wang XX, Sun BF, Jiao J, Chong ZC, Chen YS, Wang XL, et al.: Genome-wide 5-hydroxymethylcytosine modification pattern is a novel epigenetic feature of globozoospermia. Oncotarget 2015, 6:6535-43.
  • [37]Razin A, Riggs AD: DNA methylation and gene function. Science 1980, 210:604-10.
  • [38]Xiong Z, Laird PW: COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 1997, 25:2532-34.
  • [39]Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, et al.: MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 2000, 28:E32.
  • [40]Dupont JM, Tost J, Jammes H, Gut IG: De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 2004, 333:119-27.
  • [41]Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al.: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 1992, 89:1827-31.
  • [42]Mardis ER: A decade’s perspective on DNA sequencing technology. Nature 2011, 470:198-203.
  • [43]Laird PW: Principles and challenges of genome wide DNA methylation analysis. Nat Rev Genet 2010, 11:191-203.
  • [44]Mensaert K, Denil S, Trooskens G, Van Criekinge W, Thas O, De Meyer T: Next-generation technologies and data analytical approaches for epigenomics. Environ Mol Mutagen 2014, 55:155-70.
  • [45]Miura F, Enomoto Y, Dairiki R, Ito T: Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 2012, 40:e136.
  • [46]Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al.: Dynamic changes in the human methylome during differentiation. Genome Res 2010, 20:320-331.
  • [47]Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, et al.: Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011, 471:68-73.
  • [48]Kouzarides T: Chromatin modifications and their function. Cell 2007, 128:693-705.
  • [49]Dada R, Kumar M, Jesudasan R, Fernández JL, Gosálvez J, Agarwal A: Epigenetics and its role in male infertility. J Assist Reprod Genet 2012, 29:213-223.
  • [50]Boissonnas CC, Jouannet P, Jammes H: Epigenetic disorders and male subfertility. Fertil Steril 2013, 99:624-631.
  • [51]Tachiwana H, Osakabe A, Kimura H, Kurumizaka H: Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro. Nucleic Acids Res 2008, 36:2208-2218.
  • [52]Tachiwana H, Kagawa W, Osakabe A, Kawaguchi K, Shiga T, Hayashi-Takanaka Y, et al.: Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc Natl Acad Sci U S A 2010, 107:10454-9.
  • [53]Shah B, Kozlowski RL, Han J, Borchers CH: Emerging mass spectrometry-based technologies for analyses of chromatin changes: analysis of histones and histone modifications. Methods Mol Biol 2011, 773:259-303.
  • [54]Rivera CM, Ren B: Mapping human epigenomes. Cell 2013, 155:39-55.
  • [55]Hamatani T: Human spermatozoal RNAs. Fertil Steril 2012, 97:275-81.
  • [56]Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al.: Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010, 329:689-93.
  • [57]Hamatani T: Spermatozoal RNA, profiling towards a clinical evaluation of sperm quality. Reprod Biomed Online 2011, 22:103-5.
  • [58]Kotaja N: MicroRNAs and spermatogenesis. Fertil Steril 2014, 101:1552-62.
  • [59]Barlow DP: Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet 2011, 45:379-403.
  • [60]Constância M, Kelsey G, Reik W: Resourceful imprinting. Nature 2004, 432:53-57.
  • [61]Barker DJ, Eriksson JG, Forsén T, Osmond C: Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 2002, 31:1235-39.
  • [62]Carrell DT: Epigenetics of the male gamete. Fertil Steril 2012, 97:267-74.
  • [63]Yanagimachi R: Male gamete contributions to the embryo. Ann N Y Acad Sci 2005, 1061:203-207.
  • [64]Oliva R: Protamines and male infertility. Hum Reprod Update 2006, 12:417-35.
  • [65]Balhorn R, Corzett M, Mazrimas JA: Formation of intraprotamine disulfides in vitro. Arch Biochem Biophys 1992, 296:384-93.
  • [66]Sonnack V, Failing K, Bergmann M, Steger K: Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia 2002, 34:384-90.
  • [67]Meistrich ML, Mohapatra B, Shirley CR, Zhao M: Roles of transition nuclear proteins in spermiogenesis. Chromosoma 2003, 111:483-88.
  • [68]de Yebra L, Ballesca JL, Vanrell JA, Bassas L, Oliva R: Complete selective absence of protamine p2 in humans. J Biol Chem 1993, 268:10553-57.
  • [69]Carrell DT, Liu L: Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl 2001, 22:604-10.
  • [70]Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT: Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril 2010, 94:1728-33.
  • [71]de Yebra L, Ballesca JL, Vanrell JA, Corzett M, Balhorn R, Oliva R: Detection of p2 precursors in the sperm cells of infertile patients who have reduced protamine p2 levels. Fertil Steril 1998, 69:755-59.
  • [72]Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT: DNA integrity is compromised in protamine-deficient human sperm. J Androl 2005, 26:741-48.
  • [73]de Mateo S, Ramos L, de Boer P, Meistrich M, Oliva R: Protamine 2 precursors and processing. Protein Pept Lett 2011, 18:778-85.
  • [74]Torregrosa N, Domínguez-Fandos D, Camejo MI, Shirley CR, Meistrich ML, Ballescà JL, et al.: Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod 2006, 21:2084-89.
  • [75]Oakes CC, la Salle S, Smiraglia DJ, Robaire B, Trasler JM: Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol 2007, 307:368-79.
  • [76]Oliva R, Mezquita C: Marked differences in the ability of distinct protamines to disassemble nucleosomal core particles in vitro. Biochemistry 1986, 25:6508-11.
  • [77]Navarro-Costa P, Nogueira P, Carvalho M, Leal F, Cordeiro I, Calhaz-Jorge C, et al.: Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm. Hum Reprod 2010, 25:2647-54.
  • [78]Krausz C, Sandoval J, Sayols S, Chianese C, Giachini C, Heyn H, et al.: Novel insights into DNA methylation features in spermatozoa: stability and peculiarities. PLoS ONE 2012, 7:e44479.
  • [79]Gatta V, Raicu F, Ferlin A, Antonucci I, Scioletti AP, Garolla A, et al.: Testis transcriptome analysis in male infertility: new insight on the pathogenesis of oligo-azoospermia in cases with and without AZFc microdeletion. BMC Genomics 2010, 11:401.
  • [80]Houshdaran S, Cortessis VK, Siegmund K, Yang A, Laird PW, Sokol RZ: Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS ONE 2007, 2:e1289.
  • [81]Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsunomiya T, et al.: Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 2007, 16:2542-51.
  • [82]Marques CJ, Costa P, Vaz B, Carvalho F, Fernandes S, Barros A, et al.: Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod 2008, 14:67-74.
  • [83]Khazamipour N, Noruzinia M, Fatehmanesh P, Keyhanee M, Pujol P: MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: the role of epigenetics in male infertility. Hum Reprod 2009, 24:2361-64.
  • [84]Poplinski A, Tüttelmann F, Kanber D, Horsthemke B, Gromoll J: Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int J Androl 2010, 33:642-49.
  • [85]Wu W, Shen O, Qin Y, Niu X, Lu C, Xia Y, et al.: Idiopathic male infertility is strongly associated with aberrant promoter methylation of methylenetetrahydrofolate reductase (MTHFR). PLoS ONE 2010, 5:e13884.
  • [86]Rajender S, Avery K, Agarwal A: Epigenetics, spermatogenesis and male infertility. Mutat Res 2011, 727:62-71.
  • [87]Li E: Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002, 3:662-73.
  • [88]Goldberg AD, Allis CD, Bernstein E: Epigenetics: a landscape takes shape. Cell 2007, 128:635-38.
  • [89]Rivera RM, Ross JW: Epigenetics in fertilization and preimplantation embryo development. Prog Biophys Mol Biol 2013, 113:423-32.
  • [90]Monk M, Adams RL, Rinaldi A: Decrease in DNA methylase activity during preimplantation development in the mouse. Development 1991, 112:189-92.
  • [91]Shi L, Wu J: Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol 2009, 7:59.
  • [92]Huang JC, Lei ZL, Shi LH, Miao YL, Yang JW, Ouyang YC, et al.: Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos. Biochem Biophys Res Commun 2007, 354:77-83.
  • [93]Mayer W, Niveleau A, Walter J, Fundele R, Haaf T: Embryogenesis: demethylation of the zygotic paternal genome. Nature 2000, 403:501-502.
  • [94]Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, et al.: Active demethylation of the paternal genome in the mouse zygote. Curr Biol 2000, 10:475-78.
  • [95]Rougier N, Bourc’his D, Gomes DM, Niveleau A, Plachot M, Pàldi A, et al.: Chromosome methylation patterns during mammalian preimplantation development. Genes Dev 1998, 12:2108-13.
  • [96]Chapman V, Forrester L, Sanford J, Hastie N, Rossant J: Cell lineage-specific undermethylation of mouse repetitive DNA. Nature 1984, 307:284-86.
  • [97]Rossant J, Sanford JP, Chapman VM, Andrews GK: Undermethylation of structural gene sequences in extraembryonic lineages of the mouse. Dev Biol 1986, 117:567-73.
  • [98]Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N: Requirement for Xist in X chromosome inactivation. Nature 1996, 379:131-37.
  • [99]Mak W, Baxter J, Silva J, Newall AE, Otte AP, Brockdorff N: Mitotically stable association of polycomb group proteins and Enx1 with the inactive X chromosome in trophoblast stem cells. Curr Biol 2004, 12:1016-20.
  • [100]Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E: Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 2004, 303:644-49.
  • [101]Payer B, Lee JT: X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 2008, 42:733-72.
  • [102]Barakat TS, Jonkers I, Monkhorst K, Gribnau J: X-changing information on X inactivation. Exp Cell Res 2010, 316:679-87.
  • [103]Davis TL, Trasler JM, Moss SB, Yang GJ, Bartolomei MS: Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics 1999, 58:18-28.
  • [104]Davis TL, Yang GJ, McCarrey JR, Bartolomei MS: The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet 2000, 9:2885-94.
  • [105]Li JY, Lees-Murdock DJ, Xu GL, Walsh CP: Timing of establishment of paternal methylation imprints in the mouse. Genomics 2004, 84:952-60.
  • [106]Miller D, Ostermeier GC: Towards a better understanding of RNA carriage by ejaculate spermatozoa. Hum Reprod Update 2006, 12:757-67.
  • [107]Miller D: Ensuring continuity of the paternal genome: potential roles for spermatozoal RNA in mammalian embryogenesis. Soc Reprod Fertil Suppl 2007, 65:373-89.
  • [108]Gannon JR, Emery BR, Jenkins TG, Carrell DT: The sperm epigenome: implications for the embryo. Adv Exp Med Biol 2014, 791:53-66.
  • [109]Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR: Distinctive chromatin in human sperm packages genes for embryo development. Nature 2009, 460:473-78.
  • [110]Carrell DT, Hammoud SS: The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod 2010, 16:37-47.
  • [111]Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT: Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod 2011, 26:2558-69.
  • [112]Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al.: Rate of de novo mutations and the importance of father’s age to disease risk. Nature 2012, 488:471-5.
  • [113]Ward WS: Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 2010, 16:30-6.
  • [114]Pinborg A, Henningsen AK, Malchau SS, Loft A: Congenital anomalies after assisted reproductive technology. Fertil Steril 2013, 99:327-32.
  • [115]Shufaro Y, Laufer N: Epigenetic concerns in assisted reproduction: update and critical review of the current literature. Fertil Steril 2013, 99:605-606.
  • [116]Bowman P, McLaren A: Viability and growth of mouse embryos after in vitro culture and fusion. J Embryol Exp Morphol 1970, 23:693-704.
  • [117]Roemer I, Reik W, Dean W, Klose J: Epigenetic inheritance in the mouse. Curr Biol 1997, 7:277-80.
  • [118]Dean W, Bowden L, Aitchison A, Klose J, Moore T, Meneses JJ, et al.: Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 1998, 125:2273-82.
  • [119]Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM: Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 2000, 62:1526-35.
  • [120]Khosla S, Dean W, Brown D, Reik W, Feil R: Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 2001, 64:918-26.
  • [121]Young LE, Sinclair KD, Wilmut I: Large offspring syndrome in cattle and sheep. Rev Reprod 1998, 3:155-63.
  • [122]Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, et al.: Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 2001, 27:153-54.
  • [123]Young LE, Schnieke AE, McCreath KJ, Wieckowski S, Konfortova G, Fernandes K, et al.: Conservation of IGF2-H19 and IGF2R imprinting in sheep: effects of somatic cell nuclear transfer. Mech Dev 2003, 120:1433-42.
  • [124]Gosden R, Trasler J, Lucifero D, Faddy M: Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet 2003, 361:1975-77.
  • [125]DeBaun MR, Niemitz EL, Feinberg AP: Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 2003, 72:156-60.
  • [126]Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y: In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 2003, 72:1338-41.
  • [127]Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS: Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med 2002, 346:731-37.
  • [128]Katari S, Turan N, Bibikova M, Erinle O, Chalian R, Foster M, et al.: DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet 2009, 18:3769-78.
  • [129]Ceelen M, van Weissenbruch MM, Roos JC, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA: Body composition in children and adolescents born after in vitro fertilization or spontaneous conception. J Clin Endocrinol Metab 2007, 92:3417-23.
  • [130]Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-Van de Waal HA: Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab 2008, 93:1682-88.
  • [131]Ceelen M, van Weissenbruch MM, Prein J, Smit JJ, Vermeiden JP, Spreeuwenberg M, et al.: Growth during infancy and early childhood in relation to blood pressure and body fat measures at age 8–18 years of IVF children and spontaneously conceived controls born to subfertile parents. Hum Reprod 2009, 24:2788-95.
  • [132]Chen M, Norman RJ, Heilbronn LK: Does in vitro fertilisation increase type 2 diabetes and cardiovascular risk? Curr Diabetes Rev 2011, 7:426-32.
  • [133]Niemitz EL, Feinberg AP: Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet 2004, 74:599-609.
  • [134]Cutfield WS, Hofman PL, Mitchell M, Morison IM: Could epigenetics play a role in the developmental origins of health and disease? Pediatr Res 2007, 61:68R-75R.
  • [135]Filipponi D, Feil R: Perturbation of genomic imprinting in oligozoospermia. Epigenetics 2009, 4:27-30.
  • [136]Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N, et al.: DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet 2009, 17:1582-91.
  • [137]Montjean D, Ravel C, Benkhalifa M, Cohen-Bacrie P, Berthaut I, Bashamboo A, et al.: Methylation changes in mature sperm deoxyribonucleic acid from oligozoospermic men: assessment of genetic variants and assisted reproductive technology outcome. Fertil Steril 2013, 100:1241-47.
  • [138]Sharma R, Biedenharn KR, Fedor JM, Agarwal A: Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol 2013, 11:66.
  • [139]Alegría-Torres JA, Baccarelli A, Bollati V: Epigenetics and lifestyle. Epigenomics 2011, 3:267-77.
  • [140]Wei Y, Schatten H, Sun QY. Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update 2014
  • [141]Dashwood R, Ho E: Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 2007, 17:363-69.
  • [142]Izzotti A, Larghero P, Longobardi M, Cartiglia C, Camoirano A, Steele VE, et al.: Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung. Mutat Res 2011, 717:9-16.
  • [143]Baccarelli A, Bollati V: Epigenetics and environmental chemicals. Curr Opin Pediatr 2009, 21:243-51.
  • [144]Wilhelm-Benartzi CS, Houseman EA, Maccani MA, Poage GM, Koestler DC, Langevin SM, et al.: In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect 2012, 120:296-302.
  • [145]Soubry A, Hoyo C, Jirtle RL, Murphy SK: A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays 2014, 36:359-71.
  • [146]Feychting M, Plato N, Nise G, Ahlbom A: Paternal occupational exposures and childhood cancer. Environ Health Perspect 2001, 109:193-6.
  • [147]Reid A, Glass DC, Bailey HD, Milne E, Armstrong BK, Alvaro F, et al.: Parental occupational exposure to exhausts, solvents, glues and paints, and risk of childhood leukemia. Cancer Causes Control 2011, 22:1575-85.
  • [148]Anway MD, Leathers C, Skinner MK: Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 2006, 147:5515-23.
  • [149]Guerrero-Bosagna C, Covert TR, Haque MM, Settles M, Nilsson EE, Anway MD, et al.: Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod Toxicol 2012, 34:694-707.
  • [150]Dubrova YE, Plumb M, Gutierrez B, Boulton E, Jeffreys AJ: Transgenerational mutation by radiation. Nature 2000, 405:37.
  • [151]Merrifield M, Kovalchuk O: Epigenetics in radiation biology: a new research frontier. Front Genet 2013, 4:40.
  • [152]Jirtle RL, Skinner MK: Environtal epigenomics and disease susceptibility. Nat Rev Genet 2007, 8:253-62.
  • [153]Stouder C, Paoloni-Giacobino A: Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 2010, 139:373-79.
  • [154]Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, et al.: Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 2010, 143:1084-96.
  • [155]Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, et al.: In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 2014, 345:1255903.
  • [156]Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ: Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 2010, 467:963-66.
  • [157]Fullston T, Ohlsson Teague EM, Palmer NO, Deblasio MJ, Mitchell M, Corbett M, et al.: Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 2013, 27:4226-43.
  • [158]Painter RC, Roseboom TJ, Bleker OP: Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 2005, 20:345-52.
  • [159]Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP: Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol 2001, 185:93-98.
  • [160]Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al.: Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 2008, 105:17046-49.
  • [161]Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al.: DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009, 18:4046-53.
  • [162]Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al.: DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 2014, 5:5592.
  • [163]Bygren LO, Kaati G, Edvinsson S: Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor 2001, 49:53-59.
  • [164]Kaati G, Bygren LO, Edvinsson S: Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 2002, 10:682-88.
  • [165]Kaati G, Bygren LO, Pembrey M, Sjöström M: Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet 2007, 15:784-90.
  • [166]Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF et al. Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes (Lond) 2015; 39:650-657.
  • [167]Bygren LO, Tinghög P, Carstensen J, Edvinsson S, Kaati G, Pembrey ME, et al.: Change in paternal grandmothers early food supply influenced cardiovascular mortality of the female grandchildren. BMC Genet 2014, 15:12.
  • [168]Vanhees K, Vonhögen IG, van Schooten FJ, Godschalk RW: You are what you eat, and so are your children: the impact of micronutrients on the epigenetic programming of offspring. Cell Mol Life Sci 2014, 71:271-85.
  • [169]Antonucci I, Di Pietro R, Alfonsi M, Centurione MA, Centurione L, Sancilio S, et al.: Human second-trimester amniotic fluid cells are able to create embryoid body-like structures “in vitro” and to show typical expression profiles of embryonic and primordial germ cells. Cell Transplant 2014, 23:1501-15.
  • [170]Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT: Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet 2014, 10:e1004458.
  • [171]Guerrero-Bosagna C, Weeks S, Skinner MK: Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations. PLoS ONE 2014, 9:e100194.
  • [172]Lane M, Robker RL, Robertson SA: Parenting from before conception. Science 2014, 345:756-60.
  • [173]Robertson SA: Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res 2005, 322:43-52.
  • [174]Bromfield JJ, Schjenken JE, Chin PY, Care AS, Jasper MJ, Robertson SA: Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc Natl Acad Sci U S A 2014, 111:2200-5.
  • [175]Hughes V: Epigenetics: the sins of the father. Nature 2014, 507:22-4.
  文献评价指标  
  下载次数:9次 浏览次数:23次