期刊论文详细信息
Journal of Experimental & Clinical Cancer Research
Design and validation of an oligonucleotide microarray for the detection of genomic rearrangements associated with common hereditary cancer syndromes
Benjamin Roa1  Kelsey Moyes1  Christopher Arnell1  Jonathan Craft1  Jayson Holladay1  Aaron Theisen1  Natalia Gutin1  Adam Murray1  Matthew Ryder1  Jeremy Schoenberger1  Collin Burton1  Nick Woolstenhulme1  Thaddeus Judkins1  Debora Mancini-DiNardo1 
[1] Myriad Genetic Laboratories, Inc., Salt Lake City 84108, UT, USA
关键词: Genetic screening;    Lynch syndrome;    Hereditary breast and ovarian cancer;    Large genomic rearrangements;    Microarray analysis;   
Others  :  1145590
DOI  :  10.1186/s13046-014-0074-9
 received in 2014-05-22, accepted in 2014-08-29,  发布年份 2014
PDF
【 摘 要 】

Background

Conventional Sanger sequencing reliably detects the majority of genetic mutations associated with hereditary cancers, such as single-base changes and small insertions or deletions. However, detection of genomic rearrangements, such as large deletions and duplications, requires special technologies. Microarray analysis has been successfully used to detect large rearrangements (LRs) in genetic disorders.

Methods

We designed and validated a high-density oligonucleotide microarray for the detection of gene-level genomic rearrangements associated with hereditary breast and ovarian cancer (HBOC), Lynch, and polyposis syndromes. The microarray consisted of probes corresponding to the exons and flanking introns of BRCA1 and BRCA2 (?1,700) and Lynch syndrome/polyposis genes MLH1, MSH2, MSH6, APC, MUTYH, and EPCAM (?2,200). We validated the microarray with 990 samples previously tested for LR status in BRCA1, BRCA2, MLH1, MSH2, MSH6, APC, MUTYH, or EPCAM. Microarray results were 100% concordant with previous results in the validation studies. Subsequently, clinical microarray analysis was performed on samples from patients with a high likelihood of HBOC mutations (13,124), Lynch syndrome mutations (18,498), and polyposis syndrome mutations (2,739) to determine the proportion of LRs.

Results

Our results demonstrate that LRs constitute a substantial proportion of genetic mutations found in patients referred for hereditary cancer genetic testing.

Conclusion

The use of microarray comparative genomic hybridization (CGH) for the detection of LRs is well-suited as an adjunct technology for both single syndrome (by Sanger sequencing analysis) and extended gene panel testing by next generation sequencing analysis. Genetic testing strategies using microarray analysis will help identify additional patients carrying LRs, who are predisposed to various hereditary cancers.

【 授权许可】

   
2014 Mancini-DiNardo et al.; licnsee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150402114852754.pdf 1069KB PDF download
Figure 2. 50KB Image download
Figure 1. 9KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Kastrinos F, Stoffel EM: History, genetics, and strategies for cancer prevention in Lynch syndrome. Clin Gastroenterol Hepatol 2014, 12:715-727. quiz e741-713
  • [2]Li D, Hu F, Wang F, Cui B, Dong X, Zhang W, Lin C, Li X, Wang D, Zhao Y: Prevalence of pathological germline mutations of hMLH1 and hMSH2 genes in colorectal cancer. PLoS One 2013, 8:e51240.
  • [3]Charbonnier F, Olschwang S, Wang Q, Boisson C, Martin C, Buisine MP, Puisieux A, Frebourg T: MSH2 in contrast to MLH1 and MSH6 is frequently inactivated by exonic and promoter rearrangements in hereditary nonpolyposis colorectal cancer. Cancer Res 2002, 62:848-853.
  • [4]Gille JJ, Hogervorst FB, Pals G, Wijnen JT, van Schooten RJ, Dommering CJ, Meijer GA, Craanen ME, Nederlof PM, de Jong D, McElgunn CJ, Schouten JP, Menko FH: Genomic deletions of MSH2 and MLH1 in colorectal cancer families detected by a novel mutation detection approach. Br J Cancer 2002, 87:892-897.
  • [5]Taylor CF, Charlton RS, Burn J, Sheridan E, Taylor GR: Genomic deletions in MSH2 or MLH1 are a frequent cause of hereditary non-polyposis colorectal cancer: identification of novel and recurrent deletions by MLPA. Hum Mutat 2003, 22:428-433.
  • [6]Wagner A, Barrows A, Wijnen JT, van der Klift H, Franken PF, Verkuijlen P, Nakagawa H, Geugien M, Jaghmohan-Changur S, Breukel C, Breukel C, Meijers-Heijboer H, Morreau H, van Puijenbroek M, Burn J, Coronel S, Kinarski Y, Okimoto R, Watson P, Lynch JF, de la Chapelle A, Lynch HT, Fodde R: Molecular analysis of hereditary nonpolyposis colorectal cancer in the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am J Hum Genet 2003, 72:1088-1100.
  • [7]Wang Y, Friedl W, Lamberti C, Jungck M, Mathiak M, Pagenstecher C, Propping P, Mangold E: Hereditary nonpolyposis colorectal cancer: frequent occurrence of large genomic deletions in MSH2 and MLH1 genes. Int J Cancer 2003, 103:636-641.
  • [8]Grabowski M, Mueller-Koch Y, Grasbon-Frodl E, Koehler U, Keller G, Vogelsang H, Dietmaier W, Kopp R, Siebers U, Schmitt W, Neitzel B, Gruber M, Doerner C, Kerker B, Ruemmele P, Henke G, Holinski-Feder E: Deletions account for 17% of pathogenic germline alterations in MLH1 and MSH2 in hereditary nonpolyposis colorectal cancer (HNPCC) families. Genet Test 2005, 9:138-146.
  • [9]Pino MS, Chung DC: Application of molecular diagnostics for the detection of Lynch syndrome. Expert Rev Mol Diagn 2010, 10:651-665.
  • [10]Baudhuin LM, Ferber MJ, Winters JL, Steenblock KJ, Swanson RL, French AJ, Butz ML, Thibodeau SN: Characterization of hMLH1 and hMSH2 gene dosage alterations in Lynch syndrome patients. Gastroenterology 2005, 129:846-854.
  • [11]Puget N, Torchard D, Serova-Sinilnikova OM, Lynch HT, Feunteun J, Lenoir GM, Mazoyer S: A 1-kb Alu-mediated germ-line deletion removing BRCA1 exon 17. Cancer Res 1997, 57:828-831.
  • [12]Palma MD, Domchek SM, Stopfer J, Erlichman J, Siegfried JD, Tigges-Cardwell J, Mason BA, Rebbeck TR, Nathanson KL: The relative contribution of point mutations and genomic rearrangements in BRCA1 and BRCA2 in high-risk breast cancer families. Cancer Res 2008, 68:7006-7014.
  • [13]Judkins T, Rosenthal E, Arnell C, Burbidge LA, Geary W, Barrus T, Schoenberger J, Trost J, Wenstrup RJ, Roa BB: Clinical significance of large rearrangements in BRCA1 and BRCA2. Cancer 2012, 118:5210-5216.
  • [14]Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG: High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998, 20:207-211.
  • [15]Redon R, Carter NP: Comparative genomic hybridization: microarray design and data interpretation. Methods Mol Biol 2009, 529:37-49.
  • [16]Vissers LE, Veltman JA, van Kessel AG, Brunner HG: Identification of disease genes by whole genome CGH arrays. Hum Mol Genet 2005, Spec No. 2:R215-R223.
  • [17]Albertson DG, Pinkel D: Genomic microarrays in human genetic disease and cancer. Hum Mol Genet 2003, 12 Spec No 2:R145-R152.
  • [18]Kanamori M, Sano A, Yasuda T, Hori T, Suzuki K: Array-based comparative genomic hybridization for genomic-wide screening of DNA copy number alterations in aggressive bone tumors. J Exp Clin Cancer Res 2012, 31:100. BioMed Central Full Text
  • [19]Staaf J, Torngren T, Rambech E, Johansson U, Persson C, Sellberg G, Tellhed L, Nilbert M, Borg A: Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH). Hum Mutat 2008, 29:555-564.
  • [20]Rouleau E, Lefol C, Tozlu S, Andrieu C, Guy C, Copigny F, Nogues C, Bieche I, Lidereau R: High-resolution oligonucleotide array-CGH applied to the detection and characterization of large rearrangements in the hereditary breast cancer gene BRCA1. Clin Genet 2007, 72:199-207.
  • [21]Alkan C, Coe BP, Eichler EE: Genome structural variation discovery and genotyping. Nat Rev Genet 2011, 12:363-376.
  • [22]Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M, Lee TY, Bodmer D, Hoenselaar E, Hendriks-Cornelissen SJ, Tsui WY, Kong CK, Brunner HG, van Kessel AG, Yuen ST, van Krieken JH, Leung SY, Hoogerbrugge N: Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3¿ exons of TACSTD1. Nat Genet 2009, 41:112-117.
  • [23]Kovacs ME, Papp J, Szentirmay Z, Otto S, Olah E: Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Hum Mutat 2009, 30:197-203.
  • [24]Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G: Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002, 30:e57.
  • [25]Vasickova P, Machackova E, Lukesova M, Damborsky J, Horky O, Pavlu H, Kuklova J, Kosinova V, Navratilova M, Foretova L: High occurrence of BRCA1 intragenic rearrangements in hereditary breast and ovarian cancer syndrome in the Czech Republic. BMC Med Genet 2007, 8:32. BioMed Central Full Text
  • [26]Rodriguez M, Torres A, Borras J, Salvat M, Guma J: Large genomic rearrangements in mutation-negative BRCA families: a population-based study. Clin Genet 2010, 78:405-407.
  文献评价指标  
  下载次数:24次 浏览次数:6次