期刊论文详细信息
Cell & Bioscience
Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis
Kai Ge1  Ji-Eun Lee1 
[1]Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
关键词: Chromatin remodeling;    Histone methylation;    Histone acetylation;    Epigenetic regulation;    Enhancer;    Transcriptional regulation;    Adipogenesis;    PPARγ;   
Others  :  790529
DOI  :  10.1186/2045-3701-4-29
 received in 2014-04-08, accepted in 2014-05-16,  发布年份 2014
PDF
【 摘 要 】

The nuclear receptor PPARγ is a master regulator of adipogenesis. PPARγ is highly expressed in adipose tissues and its expression is markedly induced during adipogenesis. In this review, we describe the current knowledge, as well as future directions, on transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Investigating the molecular mechanisms that control PPARγ expression during adipogenesis is critical for understanding the development of white and brown adipose tissues, as well as pathological conditions such as obesity and diabetes. The robust induction of PPARγ expression during adipogenesis also serves as an excellent model system for studying transcriptional and epigenetic regulation of cell-type-specific gene expression.

【 授权许可】

   
2014 Lee and Ge; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705001253173.pdf 1299KB PDF download
Figure 5. 156KB Image download
Figure 4. 71KB Image download
Figure 3. 44KB Image download
Figure 2. 68KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Evans RM, Barish GD, Wang YX: PPARs and the complex journey to obesity. Nat Med 2004, 10(4):355-361.
  • [2]Rosen ED, Spiegelman BM: PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 2001, 276(41):37731-37734.
  • [3]Rosen ED, Hsu C-H, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM: C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 2002, 16(1):22-26.
  • [4]Tontonoz P, Hu E, Spiegelman BM: Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994, 79(7):1147-1156.
  • [5]Rosen ED, MacDougald OA: Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006, 7(12):885-896.
  • [6]Farmer SR: Transcriptional control of adipocyte formation. Cell Metab 2006, 4(4):263-273.
  • [7]Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM: PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 1999, 4(4):585-595.
  • [8]Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM: PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999, 4(4):611-617.
  • [9]Schupp M, Cristancho AG, Lefterova MI, Hanniman EA, Briggs ER, Steger DJ, Qatanani M, Curtin JC, Schug J, Ochsner SA, McKenna NJ, MA L: Re-expression of GATA2 cooperates with peroxisome proliferator-activated receptor-gamma depletion to revert the adipocyte phenotype. J Biol Chem 2009, 284(14):9458-9464.
  • [10]Imai T, Takakuwa R, Marchand S, Dentz E, Bornert JM, Messaddeq N, Wendling O, Mark M, Desvergne B, Wahli W, Chambon P, Metzger D: Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci U S A 2004, 101(13):4543-4547.
  • [11]Monajemi H, Zhang L, Li G, Jeninga EH, Cao H, Maas M, Brouwer CB, Kalkhoven E, Stroes E, Hegele RA, Leff T: Familial partial lipodystrophy phenotype resulting from a single-base mutation in deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-gamma. J Clin Endocrinol Metab 2007, 92(5):1606-1612.
  • [12]Agarwal AK, Garg A: A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab 2002, 87(1):408-411.
  • [13]Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T: PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 2002, 51(12):3586-3590.
  • [14]Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA: An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995, 270(22):12953-12956.
  • [15]Rosen CJ: The rosiglitazone story – lessons from an FDA advisory committee meeting. N Engl J Med 2007, 357(9):844-846.
  • [16]Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS, Reddy JK: Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U S A 1995, 92(17):7921-7925.
  • [17]Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J: The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 1997, 272(30):18779-18789.
  • [18]Jitrapakdee S, Slawik M, Medina-Gomez G, Campbell M, Wallace JC, Sethi JK, O’Rahilly S, Vidal-Puig AJ: The peroxisome proliferator-activated receptor-gamma regulates murine pyruvate carboxylase gene expression in vivo and in vitro. J Biol Chem 2005, 280(29):27466-27476.
  • [19]Cho YW, Hong S, Jin Q, Wang L, Lee JE, Gavrilova O, Ge K: Histone methylation regulator PTIP is required for PPARgamma and C/EBPalpha expression and adipogenesis. Cell Metab 2009, 10(1):27-39.
  • [20]Kornberg RD, Lorch Y: Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999, 98(3):285-294.
  • [21]Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ: Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997, 389(6648):251-260.
  • [22]Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293(5532):1074-1080.
  • [23]Knezetic JA, Luse DS: The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 1986, 45(1):95-104.
  • [24]Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD: Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 2004, 36(8):900-905.
  • [25]Kingston RE, Narlikar GJ: ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 1999, 13(18):2339-2352.
  • [26]Cote J, Peterson CL, Workman JL: Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci U S A 1998, 95(9):4947-4952.
  • [27]Hamiche A, Sandaltzopoulos R, Gdula DA, Wu C: ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 1999, 97(7):833-842.
  • [28]Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000, 403(6765):41-45.
  • [29]Kouzarides T: Chromatin modifications and their function. Cell 2007, 128(4):693-705.
  • [30]Jin Q, Yu L-R, Wang L, Zhang Z, Kasper LH, Lee J-E, Wang C, Brindle PK, Dent SYR, Ge K: Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27 ac in nuclear receptor transactivation. EMBO J 2011, 30(2):249-262.
  • [31]Marmorstein R, Roth SY: Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 2001, 11(2):155-161.
  • [32]Ayer DE: Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol 1999, 9(5):193-198.
  • [33]Li X, Corsa CA, Pan PW, Wu L, Ferguson D, Yu X, Min J, Dou Y: MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol 2010, 30(22):5335-5347.
  • [34]Kueh AJ, Dixon MP, Voss AK, Thomas T: HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development. Mol Cell Biol 2011, 31(4):845-860.
  • [35]Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell 2007, 129(4):823-837.
  • [36]Li B, Carey M, Workman JL: The role of chromatin during transcription. Cell 2007, 128(4):707-719.
  • [37]Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T: Active genes are tri-methylated at K4 of histone H3. Nature 2002, 419(6905):407-411.
  • [38]Calo E, Wysocka J: Modification of enhancer chromatin: what, how, and why? Mol Cell 2013, 49(5):825-837.
  • [39]Ge K: Epigenetic regulation of adipogenesis by histone methylation. Biochim Biophys Acta 2012, 1819(7):727-732.
  • [40]Shi Y: Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet 2007, 8(11):829-833.
  • [41]Lane MD, Tang Q-Q, Jiang M-S: Role of the CCAAT Enhancer Binding Proteins (C/EBPs) in adipocyte differentiation. Biochem Biophys Res Commun 1999, 266(3):677.
  • [42]Landschulz WH, Johnson PF, McKnight SL: The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 1989, 243(4899):1681-1688.
  • [43]Cao Z, Umek RM, McKnight SL: Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 1991, 5(9):1538-1552.
  • [44]Wu Z, Xie Y, Bucher NL, Farmer SR: Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev 1995, 9(19):2350-2363.
  • [45]Wu Z, Bucher NL, Farmer SR: Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol 1996, 16(8):4128-4136.
  • [46]Tanaka T, Yoshida N, Kishimoto T, Akira S: Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J 1997, 16(24):7432-7443.
  • [47]Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR, Darlington GJ: Impaired energy homeostasis in C/EBP alpha knockout mice. Science 1995, 269(5227):1108-1112.
  • [48]Salma N, Xiao H, Imbalzano AN: Temporal recruitment of CCAAT/enhancer-binding proteins to early and late adipogenic promoters in vivo. J Mol Endocrinol 2006, 36(1):139-151.
  • [49]Clarke SL, Robinson CE, Gimble JM: CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor gamma 2 promoter. Biochem Biophys Res Commun 1997, 240(1):99-103.
  • [50]Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W, Ge K: H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2013, 2:e01503.
  • [51]Siersbaek R, Nielsen R, John S, Sung MH, Baek S, Loft A, Hager GL, Mandrup S: Extensive chromatin remodelling and establishment of transcription factor ‘hotspots’ during early adipogenesis. EMBO J 2011, 30(8):1459-1472.
  • [52]Siersbaek R, Nielsen R, Mandrup S: Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab 2012, 23(2):56-64.
  • [53]Lin H, Grosschedl R: Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 1995, 376(6537):263-267.
  • [54]Kieslinger M, Folberth S, Dobreva G, Dorn T, Croci L, Erben R, Consalez GG, Grosschedl R: EBF2 regulates osteoblast-dependent differentiation of osteoclasts. Dev Cell 2005, 9(6):757-767.
  • [55]Jimenez MA, Akerblad P, Sigvardsson M, Rosen ED: Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Mol Cell Biol 2007, 27(2):743-757.
  • [56]Akerblad P, Lind U, Liberg D, Bamberg K, Sigvardsson M: Early B-cell factor (O/E-1) is a promoter of adipogenesis and involved in control of genes important for terminal adipocyte differentiation. Mol Cell Biol 2002, 22(22):8015-8025.
  • [57]Rajakumari S, Wu J, Ishibashi J, Lim HW, Giang AH, Won KJ, Reed RR, Seale P: EBF2 determines and maintains brown adipocyte identity. Cell Metab 2013, 17(4):562-574.
  • [58]Birsoy K, Chen Z, Friedman J: Transcriptional regulation of adipogenesis by KLF4. Cell Metab 2008, 7(4):339-347.
  • [59]Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K, Nishimura G, Maemura K, Yamauchi T, Kubota N, Suzuki R, Kitamura T, Akira S, Kadowaki T, Nagai R: Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 2005, 1(1):27-39.
  • [60]Pei H, Yao Y, Yang Y, Liao K, Wu JR: Kruppel-like factor KLF9 regulates PPARgamma transactivation at the middle stage of adipogenesis. Cell Death Differ 2011, 18(2):315-327.
  • [61]Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, Nakamura K, Nakamura T, Yamauchi T, Kubota N, Kadowaki T, Matsuki Y, Ogawa W, Hiramatsu R, Kasuga M: Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 2005, 280(13):12867-12875.
  • [62]Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ, Kawahara R, Hauner H, Jain MK: The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem 2003, 278(4):2581-2584.
  • [63]Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS: SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 1993, 75(1):187-197.
  • [64]Tontonoz P, Kim JB, Graves RA, Spiegelman BM: ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 1993, 13(8):4753-4759.
  • [65]Kim JB, Spiegelman BM: ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996, 10(9):1096-1107.
  • [66]Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart JC, Briggs M, Spiegelman BM, Auwerx J: Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol 1999, 19(8):5495-5503.
  • [67]Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, Roby YA, Kulaga H, Reed RR, Spiegelman BM: Transcriptional control of preadipocyte determination by Zfp423. Nature 2010, 464(7288):619-623.
  • [68]Waki H, Nakamura M, Yamauchi T, Wakabayashi K, Yu J, Hirose-Yotsuya L, Take K, Sun W, Iwabu M, Okada-Iwabu M, Fujita T, Aoyama T, Tsutsumi S, Ueki K, Kodama T, Sakai J, Aburatani H, Kadowaki T: Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation. PLoS Genet 2011, 7(10):e1002311.
  • [69]Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, McKeon C, Darlington GJ, Spiegelman BM: Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 1999, 3(2):151-158.
  • [70]Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A, Feng D, Zhuo D, Stoeckert CJ Jr, Liu XS, Lazar MA: PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 2008, 22(21):2941-2952.
  • [71]Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, Denissov S, Borgesen M, Francoijs K-J, Mandrup S, Stunnenberg HG: Genome-wide profiling of PPAR{gamma}:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 2008, 22(21):2953-2967.
  • [72]Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM, Hotamisligil GS: Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 2000, 290(5489):134-138.
  • [73]Tong Q, Tsai J, Tan G, Dalgin G, Hotamisligil GS: Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Mol Cell Biol 2005, 25(2):706-715.
  • [74]Xiao H, Leblanc SE, Wu Q, Konda S, Salma N, Marfella CG, Ohkawa Y, Imbalzano AN: Chromatin accessibility and transcription factor binding at the PPARgamma2 promoter during adipogenesis is protein kinase A-dependent. J Cell Physiol 2011, 226(1):86-93.
  • [75]Salma N, Xiao H, Mueller E, Imbalzano AN: Temporal recruitment of transcription factors and SWI/SNF chromatin-remodeling enzymes during adipogenic induction of the peroxisome proliferator-activated receptor gamma nuclear hormone receptor. Mol Cell Biol 2004, 24(11):4651-4663.
  • [76]Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, Rosen ED: Comparative epigenomic analysis of murine and human adipogenesis. Cell 2010, 143(1):156-169.
  • [77]Steger DJ, Grant GR, Schupp M, Tomaru T, Lefterova MI, Schug J, Manduchi E, Stoeckert CJ Jr, Lazar MA: Propagation of adipogenic signals through an epigenomic transition state. Genes Dev 2010, 24(10):1035-1044.
  • [78]Takahashi N, Kawada T, Yamamoto T, Goto T, Taimatsu A, Aoki N, Kawasaki H, Taira K, Yokoyama KK, Kamei Y, Fushiki T: Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor gamma. J Biol Chem 2002, 277(19):16906-16912.
  • [79]Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R: Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 2010, 107(50):21931-21936.
  • [80]Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A: hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 2005, 25(15):6798-6810.
  • [81]Wang L, Xu S, Lee J-E, Baldridge A, Grullon S, Peng W, Ge K: Histone H3K9 methyltransferase G9a represses PPAR [gamma] expression and adipogenesis. EMBO J 2013, 32(1):45-59.
  • [82]Musri MM, Carmona MC, Hanzu FA, Kaliman P, Gomis R, Parrizas M: Histone demethylase LSD1 regulates adipogenesis. J Biol Chem 2010, 285(39):30034-30041.
  • [83]Wang L, Jin Q, Lee JE, Su IH, Ge K: Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci U S A 2010, 107(16):7317-7322.
  • [84]Cho Y-W, Hong T, Hong S, Guo H, Yu H, Kim D, Guszczynski T, Dressler GR, Copeland TD, Kalkum M, Ge K: PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J Biol Chem 2007, 282(28):20395-20406.
  • [85]Ruthenburg AJ, Allis CD, Wysocka J: Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 2007, 25(1):15-30.
  • [86]Vermeulen M, Timmers HT: Grasping trimethylation of histone H3 at lysine 4. Epigenomics 2010, 2(3):395-406.
  • [87]Cho YW, Hong S, Ge K: Affinity purification of MLL3/MLL4 histone H3K4 methyltransferase complex. Methods Mol Biol 2012, 809:465-472.
  • [88]Hong S, Cho Y-W, Yu L-R, Yu H, Veenstra TD, Ge K: Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 2007, 104(47):18439-18444.
  • [89]Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, Di Croce L, Shiekhattar R: Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 2007, 318(5849):447-450.
  • [90]Patel SR, Kim D, Levitan I, Dressler GR: The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 2007, 13(4):580.
  • [91]Lee J, Saha PK, Yang Q-H, Lee S, Park JY, Suh Y, Lee S-K, Chan L, Roeder RG, Lee JW: Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci 2008, 105(49):19229-19234.
  • [92]Qi C, Surapureddi S, Zhu Y-J, Yu S, Kashireddy P, Rao MS, Reddy JK: Transcriptional coactivator PRIP, the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma})-interacting protein, is required for PPAR{gamma}-mediated adipogenesis. J Biol Chem 2003, 278(28):25281-25284.
  • [93]Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD: Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 2003, 12(6):1591-1598.
  • [94]Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y: G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 2002, 16(14):1779-1791.
  • [95]Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K: The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 2007, 27(10):3769-3779.
  • [96]Cristancho AG, Lazar MA: Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 2011, 12(11):722-734.
  • [97]Zentner GE, Scacheri PC: The chromatin fingerprint of gene enhancer elements. J Biol Chem 2012, 287(37):30888-30896.
  • [98]Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F: Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339(6121):819-823.
  • [99]Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY: Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010, 329(5992):689-693.
  • [100]Lee JT: Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev 2009, 23(16):1831-1842.
  • [101]Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG, Yuan B, Kellis M, Lodish HF, Rinn JL: Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci U S A 2013, 110(9):3387-3392.
  • [102]Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W: Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 2002, 10(6):1453-1465.
  • [103]Dekker J, Rippe K, Dekker M, Kleckner N: Capturing chromosome conformation. Science 2002, 295(5558):1306-1311.
  • [104]Fraser P, Bickmore W: Nuclear organization of the genome and the potential for gene regulation. Nature 2007, 447(7143):413-417.
  文献评价指标  
  下载次数:18次 浏览次数:10次