Cell & Bioscience | |
Clinical biomarkers of pulmonary carcinoid tumors in never smokers via profiling miRNA and target mRNA | |
Ping Yang3  Dennis A Wigle1,10  Jin Jen8  Eric D Wieben1  Ming You9  George Vasmatzis4  Bruce W Eckloff6  Liang Wang2  Zhifu Sun3  Marie C Aubry8  Julian Molina7  Bo Deng5  | |
[1] Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA;Department of Pathology, Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin, USA;Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA;Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA;Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China;Medical Genome Facility, Mayo Clinic College of Medicine, Rochester, Minnesota, USA;Department of Oncology, Division of Medical Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA;Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA;Department of Cancer Center and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA;Department of Surgery, Division of General Thoracic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, USA | |
关键词: Survival; Carcinoid; mRNA; miRNA; | |
Others : 1149548 DOI : 10.1186/2045-3701-4-35 |
|
received in 2014-03-03, accepted in 2014-06-29, 发布年份 2014 | |
【 摘 要 】
Background
miRNAs play key regulatory roles in cellular pathological processes. We aimed to identify clinically meaningful biomarkers in pulmonary carcinoid tumors (PCTs), a member of neuroendocrine neoplasms, via profiling miRNAs and mRNAs.
Results
From the total of 1145 miRNAs, we obtained 16 and 17 miRNAs that showed positive and negative fold changes (FCs, tumors vs. normal tissues) in the top 1% differentially expressed miRNAs, respectively. We uncovered the target genes that were predicted by at least two prediction tools and overlapped by at least one-half of the top miRNAs, which yielded 44 genes (FC<-2) and 56 genes (FC>2), respectively. Higher expressions of CREB5, PTPRB and COL4A3 predicted favorable disease free survival (Hazard ratio: 0.03, 0.19 and 0.36; P value: 0.03, 0.03 and 0.08). Additionally, 79 mutated genes have been found in nine PCTs where TP53 was the only repeated mutation.
Conclusion
We identified that the expressions of three genes have clinical implications in PCTs. The biological functions of these biomarkers warrant further studies.
【 授权许可】
2014 Deng et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150405081545107.pdf | 351KB | download |
【 参考文献 】
- [1]Naalsund A, Rostad H, Strom EH, Lund MB, Strand TE: Carcinoid lung tumors–incidence, treatment and outcomes: a population-based study. Eur J Cardiothorac Surg 2011, 39:565-569.
- [2]Travis WD: Lung tumours with neuroendocrine differentiation. Eur J Cancer 2009, 45(Suppl 1):251-266.
- [3]Swarts DR, Ramaekers FC, Speel EJ: Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta 1826, 2012:255-271.
- [4]Demirci I, Herold S, Kopp A, Flasshove M, Klosterhalfen B, Janssen H: Overdiagnosis of a typical carcinoid tumor as an adenocarcinoma of the lung: a case report and review of the literature. World J Surg Oncol 2012, 10:19.
- [5]Sun H, Chen Y, Zhao X, Wang X, Jiang Y, Wu P, Tang Y, Meng Q, Xu S: Abnormal activity of default mode network in GERD patients. BMC Neurosci 2013, 14:69.
- [6]Hamad AM, Rizzardi G, Marulli G, Rea F: Nodal recurrence of pulmonary carcinoid 30 years after primary resection. J Thorac Oncol 2008, 3:680-681.
- [7]van Rooij E, Olson EN: MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 2012, 11:860-872.
- [8]van Kouwenhove M, Kedde M, Agami R: MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 2011, 11:644-656.
- [9]Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, Cinnaiyan AM: Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007, 9:166-180.
- [10]McKenna DJ, McDade SS, Patel D, McCance DJ: MicroRNA 203 expression in keratinocytes is dependent on regulation of p53 levels by E6. J Virol 2010, 84:10644-10652.
- [11]Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB, Lim SP, Kumar R, Suetani RJ, Goodall GJ, Callen DF: Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 2013, 32:2992-3000.
- [12]Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY: MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 2007, 67:8433-8438.
- [13]Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M: Prognostic values of microRNAs in colorectal cancer. Biomark Insights 2006, 2:113-121.
- [14]Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, Kamat AA, Sood AK, Ellenson LH, Hermeking H, Nikitin AY: Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 2010, 16:1119-1128.
- [15]Lopez JA, Alvarez-Salas LM: Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion. Biochem Biophys Res Commun 2011, 409:513-519.
- [16]Ghose J, Sinha M, Das E, Jana NR, Bhattacharyya NP: Regulation of miR-146a by RelA/NFkB and p53 in STHdh (Q111)/Hdh (Q111) cells, a cell model of Huntington’s disease. PLoS One 2011, 6:e23837.
- [17]Hosako H, Martin GS, Barrier M, Chen YA, Ivanov IV, Mirkes PE: Gene and microRNA expression in p53-deficient day 8.5 mouse embryos. Birth Defects Res A Clin Mol Teratol 2009, 85:546-555.
- [18]Lee HW, Lee EH, Ha SY, Lee CH, Chang HK, Chang S, Kwon KY, Hwang IS, Roh MS, Seo JW: Altered expression of microRNA miR-21, miR-155, and let-7a and their roles in pulmonary neuroendocrine tumors. Pathol Int 2012, 62:583-591.
- [19]Di Leva G, Croce CM: miRNA profiling of cancer. Curr Opin Genet Dev 2013, 23:3-11.
- [20]Kolbert CP, Feddersen RM, Rakhshan F, Grill DE, Simon G, Middha S, Jang JS, Simon V, Schultz DA, Zschunke M, Lingle W, Carr JM, Thompson EA, Oberg AL, Eckloff BW, Wieben ED, Li P, Yang P, Jen J: Multi-platform analysis of microRNA expression measurements in RNA from fresh frozen and FFPE tissues. PLoS One 2013, 8:e52517.
- [21]Ishiguro H, Gong JP, Hall FS, Arinami T, Uhl GR: Association of PTPRB gene polymorphism with drug addiction. Am J Med Genet B Neuropsychiatr Genet 2008, 147B:1167-1172.
- [22]Sjostrand C, Duvefelt K, Steinberg A, Remahl IN, Waldenlind E, Hillert J: Gene expression profiling in cluster headache: a pilot microarray study. Headache 2006, 46:1518-1534.
- [23]Jiang CP, Wu BH, Chen SP, Fu MY, Yang M, Liu F, Wang BQ: High COL4A3 expression correlates with poor prognosis after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Tumour Biol 2013, 34:415-420.
- [24]Banck MS, Kanwar R, Kulkarni AA, Boora GK, Metge F, Kipp BR, Zhang L, Thorland EC, Minn KT, Tentu R, Eckloff BW, Wieben ED Wu Y, Cunningham JM, Nagorgny DM, Gilbert JA, Ames MM, Beutler AS: The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest 2013, 123:2502-2508.
- [25]Wang DG, Johnston CF, Anderson N, Sloan JM, Buchanan KD: Overexpression of the tumour suppressor gene p53 is not implicated in neuroendocrine tumour carcinogenesis. J Pathol 1995, 175:397-401.
- [26]Li Y, Sheu CC, Ye Y, de Andrade M, Wang L, Chang SC, Aubry MC, Aakre JA, Allen MS, Chen F, Cunningham JM, Deschamps C, Jiang R, Lin J, Marks RS, Pankratz VS, Su L, Li Y, Sun Z, Tang H, Vasmatzis G, Harris CC, Splitz MR, Jen J, Wang R, Zhang ZF, Christiani DC, Wu X, Yang P: Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. Lancet Oncol 2010, 11:321-330.
- [27]Dweep H, Sticht C, Pandey P, Gretz N: miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 2011, 44:839-847.
- [28]Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. Nucleic Acids Res 2008, 36:D149-D153.
- [29]Cheng Y, Kuang W, Hao Y, Zhang D, Lei M, Du L, Jiao H, Zhang X, Wang F: Downregulation of miR-27a* and miR-532–5p and upregulation of miR-146a and miR-155 in LPS-induced RAW264.7 macrophage cells. Inflammation 2012, 35:1308-1313.
- [30]Loher P, Rigoutsos I: Interactive exploration of RNA22 microRNA target predictions. Bioinformatics 2012, 28:3322-3323.
- [31]Clarke C, Henry M, Doolan P, Kelly S, Aherne S, Sanchez N, Kelly P, Kinsella P, Breen L, Madden SF, Zhang L, Leonard M, Clynes M, Meleady P, Barron N: Integrated miRNA, mRNA and protein expression analysis reveals the role of post-transcriptional regulation in controlling CHO cell growth rate. BMC Genomics 2012, 13:656.