期刊论文详细信息
Journal of Neuroinflammation
A role for human brain pericytes in neuroinflammation
Mike Dragunow4  Richard LM Faull4  Edward W Mee2  Peter S Bergin2  Robyn L Oldfield3  Daniel Hurley1  Sheryl Feng4  Justin Rustenhoven4  Deidre Jansson4 
[1]Department of Molecular Medicine and Pathology, The University of Auckland, Bldg 504, 85 Park Road, Auckland 1023, New Zealand
[2]Auckland City Hospital, 2 Park Rd, Auckland 1010, New Zealand
[3]LabPLUS, Auckland City Hospital, Bldg 31, Gate 4 Grafton Road, Auckland 1148, New Zealand
[4]Centre for Brain Research, The University of Auckland, Bldg 503, 85 Park Road, Auckland 1023, New Zealand
关键词: Chemokines;    Blood–brain barrier;    Inflammation;    Astrocytes;    Microglia;   
Others  :  1151602
DOI  :  10.1186/1742-2094-11-104
 received in 2013-12-18, accepted in 2014-05-19,  发布年份 2014
PDF
【 摘 要 】

Background

Brain inflammation plays a key role in neurological disease. Although much research has been conducted investigating inflammatory events in animal models, potential differences in human brain versus rodent models makes it imperative that we also study these phenomena in human cells and tissue.

Methods

Primary human brain cell cultures were generated from biopsy tissue of patients undergoing surgery for drug-resistant epilepsy. Cells were treated with pro-inflammatory compounds IFNγ, TNFα, IL-1β, and LPS, and chemokines IP-10 and MCP-1 were measured by immunocytochemistry, western blot, and qRT-PCR. Microarray analysis was also performed on late passage cultures treated with vehicle or IFNγ and IL-1β.

Results

Early passage human brain cell cultures were a mixture of microglia, astrocytes, fibroblasts and pericytes. Later passage cultures contained proliferating fibroblasts and pericytes only. Under basal culture conditions all cell types showed cytoplasmic NFκB indicating that they were in a non-activated state. Expression of IP-10 and MCP-1 were significantly increased in response to pro-inflammatory stimuli. The two chemokines were expressed in mixed cultures as well as cultures of fibroblasts and pericytes only. The expression of IP-10 and MCP-1 were regulated at the mRNA and protein level, and both were secreted into cell culture media. NFκB nuclear translocation was also detected in response to pro-inflammatory cues (except IFNγ) in all cell types. Microarray analysis of brain pericytes also revealed widespread changes in gene expression in response to the combination of IFNγ and IL-1β treatment including interleukins, chemokines, cellular adhesion molecules and much more.

Conclusions

Adult human brain cells are sensitive to cytokine challenge. As expected ‘classical’ brain immune cells, such as microglia and astrocytes, responded to cytokine challenge but of even more interest, brain pericytes also responded to such challenge with a rich repertoire of gene expression. Immune activation of brain pericytes may play an important role in communicating inflammatory signals to and within the brain interior and may also be involved in blood brain barrier (BBB) disruption . Targeting brain pericytes, as well as microglia and astrocytes, may provide novel opportunities for reducing brain inflammation and maintaining BBB function and brain homeostasis in human brain disease.

【 授权许可】

   
2014 Jansson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406090028327.pdf 3654KB PDF download
Figure 14. 99KB Image download
Figure 13. 78KB Image download
Figure 12. 26KB Image download
Figure 11. 107KB Image download
Figure 10. 90KB Image download
Figure 9. 106KB Image download
Figure 8. 36KB Image download
Figure 7. 107KB Image download
Figure 6. 89KB Image download
Figure 5. 94KB Image download
Figure 4. 33KB Image download
Figure 3. 37KB Image download
Figure 2. 37KB Image download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

【 参考文献 】
  • [1]Monson NL, Ireland SJ, Ligocki AJ, Chen D, Rounds WH, Li M, Huebinger RM, Munro Cullum C, Greenberg BM, Stowe AM, Zhang R: Elevated CNS inflammation in patients with preclinical Alzheimer’s disease. J Cereb Blood Flow Metab 2014, 34:30-33.
  • [2]Aguzzi A, Barres BA, Bennett ML: Microglia: scapegoat, saboteur, or something else? Science 2013, 339:156-161.
  • [3]Graeber MB: Changing face of microglia. Science 2010, 330:783-788.
  • [4]Abbott NJ, Ronnback L, Hansson E: Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 2006, 7:41-53.
  • [5]Paul G, Ozen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, Jansson K, Dannaeus K, Henriques-Oliveira C, Roybon L, Anisimov SV, Renström E, Svensson M, Haegerstrand A, Brundin P: The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 2012, 7:e35577.
  • [6]Alcendor DJ, Charest AM, Zhu WQ, Vigil HE, Knobel SM: Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus. J Neuroinflammation 2012, 9:95.
  • [7]Fabry Z, Fitzsimmons KM, Herlein JA, Moninger TO, Dobbs MB, Hart MN: Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. J Neuroimmunol 1993, 47:23-34.
  • [8]Dragunow M: Meningeal and choroid plexus cells–novel drug targets for CNS disorders. Brain Res 2013, 1501:32-55.
  • [9]Winkler EA, Bell RD, Zlokovic BV: Central nervous system pericytes in health and disease. Nat Neurosci 2011, 14:1398-1405.
  • [10]Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, Gartner F, Khandoga AG, Legate KR, Pless R, Hepper I, Lauber K, Walzog B, Massberg S: Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol 2013, 14:41-51.
  • [11]Proebstl D, Voisin MB, Woodfin A, Whiteford J, D’Acquisto F, Jones GE, Rowe D, Nourshargh S: Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 2012, 209:1219-1234.
  • [12]Wang S, Cao C, Chen Z, Bankaitis V, Tzima E, Sheibani N, Burridge K: Pericytes regulate vascular basement membrane remodeling and govern neutrophil extravasation during inflammation. PLoS One 2012, 7:e45499.
  • [13]Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, Deerinck TJ, Smirnoff DS, Bedard C, Hakozaki H, Gonias Murray S, Ling JB, Lassmann H, Degen JL, Ellisman MH, Akassoglou K: Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 2012, 3:1227.
  • [14]Smith AM, Dragunow M: The human side of microglia. Trends Neurosci 2014, 37:125-135.
  • [15]Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, López CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, et al.: Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 2013, 110:3507-3512.
  • [16]De Groot CJ, Langeveld CH, Jongenelen CA, Montagne L, Van Der Valk P, Dijkstra CD: Establishment of human adult astrocyte cultures derived from postmortem multiple sclerosis and control brain and spinal cord regions: immunophenotypical and functional characterization. J Neurosci Res 1997, 49:342-354.
  • [17]Gibbons HM, Hughes SM, Van Roon-Mom W, Greenwood JM, Narayan PJ, Teoh HH, Bergin PM, Mee EW, Wood PC, Faull RL, Dragunow M: Cellular composition of human glial cultures from adult biopsy brain tissue. J Neurosci Methods 2007, 166:89-98.
  • [18]Newcombe J, Meeson A, Cuzner ML: Immunocytochemical characterization of primary glial cell cultures from normal adult human brain. Neuropathol Appl Neurobiol 1988, 14:453-465.
  • [19]Park TI, Monzo H, Mee EW, Bergin PS, Teoh HH, Montgomery JM, Faull RL, Curtis MA, Dragunow M: Adult human brain neural progenitor cells (NPCs) and fibroblast-like cells have similar properties in vitro but only NPCs differentiate into neurons. PLoS One 2012, 7:e37742.
  • [20]Karow M, Sanchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascon S, Khan MA, Lie DC, Dellavalle A, Cossu G, Goldbrunner R, Götz M, Berninger B: Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 2012, 11:471-476.
  • [21]Sano Y, Shimizu F, Abe M, Maeda T, Kashiwamura Y, Ohtsuki S, Terasaki T, Obinata M, Kajiwara K, Fujii M, Suzuki M, Kanda T: Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood–brain barrier function. J Cell Physiol 2010, 225:519-528.
  • [22]Biomedical Imaging Research Unit – The Universiy of Auckland https://www.fmhs.auckland.ac.nz/en/sms/about/our-departments/biomedical-imaging-research-unit/microscopy-and-imaging/light-fluorescence/molecular-devices-imagexpress.html webcite
  • [23]Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW, Curtis MA, Faull RL, Dragunow M: M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia. J Neuroinflammation 2013, 10:85.
  • [24]Wang H, Wang AX, Barrett EJ: Insulin-induced endothelial cell cortical actin filament remodeling: a requirement for trans-endothelial insulin transport. Mol Endocrinol 2012, 26:1327-1338.
  • [25]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001, 25:402-408.
  • [26]Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW, Faull RL, Dragunow M: The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia 2013, 61:929-942.
  • [27]Smith AM, Graham SE, Feng SX, Oldfield RL, Bergin PM, Mee EW, Faull RL, Curtis MA, Dragunow M: Adult human glia, pericytes and meningeal fibroblasts respond similarly to IFNy but not to TGFβ1 or M-CSF. PLoS One 2013, 8:e80463.
  • [28]Hotamisligil GS: Inflammation and metabolic disorders. Nature 2006, 444:860-867.
  • [29]Kovac A, Erickson MA, Banks WA: Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation 2011, 8:139.
  • [30]Wu Z, Zhang J, Nakanishi H: Leptomeningeal cells activate microglia and astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines during systemic inflammation. J Neuroimmunol 2005, 167:90-98.
  • [31]Garabedian BV, Lemaigre-Dubreuil Y, Mariani J: Central origin of IL-1beta produced during peripheral inflammation: role of meninges. Brain Res Mol Brain Res 2000, 75:259-263.
  • [32]Wang T, Wang BR, Zhao HZ, Kuang F, Fan J, Duan XL, Ju G: Lipopolysaccharide up-regulates IL-6R alpha expression in cultured leptomeningeal cells via activation of ERK1/2 pathway. Neurochem Res 2008, 33:1901-1910.
  • [33]Wieseler-Frank J, Jekich BM, Mahoney JH, Bland ST, Maier SF, Watkins LR: A novel immune-to-CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus. Brain Behav Immun 2007, 21:711-718.
  • [34]Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K: L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J Neuroinflammation 2012, 9:275.
  • [35]Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R: Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 2010, 7:30.
  • [36]Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ: Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res 2014, 1550:1-8.
  • [37]Guijarro-Munoz I, Compte M, Alvarez-Cienfuegos A, Alvarez-Vallina L, Sanz L: Lipopolysaccharide activates TLR4-mediated NF-kappaB signaling pathway and proinflammatory response in human pericytes. J Biol Chem 2014, 289:2457-2468.
  • [38]Burke SJ, Goff MR, Lu D, Proud D, Karlstad MD, Collier JJ: Synergistic expression of the CXCL10 gene in response to IL-1beta and IFN-gamma involves NF-kappaB, phosphorylation of STAT1 at Tyr701, and acetylation of histones H3 and H4. J Immunol 2013, 191:323-336.
  • [39]Lalaoui N, Morle A, Merino D, Jacquemin G, Iessi E, Morizot A, Shirley S, Robert B, Solary E, Garrido C, Micheau O: TRAIL-R4 promotes tumor growth and resistance to apoptosis in cervical carcinoma HeLa cells through AKT. PLoS One 2011, 6:e19679.
  • [40]Zhu Y, Yu T, Zhang XC, Nagasawa T, Wu JY, Rao Y: Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci 2002, 5:719-720.
  • [41]Gibbons HM, Smith AM, Teoh HH, Bergin PM, Mee EW, Faull RL, Dragunow M: Valproic acid induces microglial dysfunction, not apoptosis, in human glial cultures. Neurobiol Dis 2011, 41:96-103.
  • [42]Chen WC, Park TS, Murray IR, Zimmerlin L, Lazzari L, Huard J, Peault B: Cellular kinetics of perivascular MSC precursors. Stem Cell Int 2013, 2013:983059.
  • [43]Vandenhaute E, Dehouck L, Boucau MC, Sevin E, Uzbekov R, Tardivel M, Gosselet F, Fenart L, Cecchelli R, Dehouck MP: Modelling the neurovascular unit and the blood–brain barrier with the unique function of pericytes. Curr Neurovasc Res 2011, 8:258-269.
  • [44]Kose N, Asashima T, Muta M, Iizasa H, Sai Y, Terasaki T, Nakashima E: Altered expression of basement membrane-related molecules in rat brain pericyte, endothelial, and astrocyte cell lines after transforming growth factor-beta1 treatment. Drug Metab Pharmacokinet 2007, 22:255-266.
  • [45]Nehls V, Drenckhahn D: Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 1991, 113:147-154.
  • [46]Verbeek MM, Otte-Holler I, Wesseling P, Ruiter DJ, de Waal RM: Induction of alpha-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-beta 1. Am J Pathol 1994, 144:372-382.
  • [47]Dore-Duffy P, Mehedi A, Wang X, Bradley M, Trotter R, Gow A: Immortalized CNS pericytes are quiescent smooth muscle actin-negative and pluripotent. Microvasc Res 2011, 82:18-27.
  • [48]Heldin CH, Westermark B: Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999, 79:1283-1316.
  • [49]Reuterdahl C, Tingstrom A, Terracio L, Funa K, Heldin CH, Rubin K: Characterization of platelet-derived growth factor beta-receptor expressing cells in the vasculature of human rheumatoid synovium. Lab Invest 1991, 64:321-329.
  • [50]Reuterdahl C, Sundberg C, Rubin K, Funa K, Gerdin B: Tissue localization of beta receptors for platelet-derived growth factor and platelet-derived growth factor B chain during wound repair in humans. J Clin Invest 1993, 91:2065-2075.
  • [51]Morgenstern DA, Asher RA, Naidu M, Carlstedt T, Levine JM, Fawcett JW: Expression and glycanation of the NG2 proteoglycan in developing, adult, and damaged peripheral nerve. Mol Cell Neurosci 2003, 24:787-802.
  • [52]Karram K, Chatterjee N, Trotter J: NG2-expressing cells in the nervous system: role of the proteoglycan in migration and glial-neuron interaction. J Anat 2005, 207:735-744.
  • [53]Makagiansar IT, Williams S, Dahlin-Huppe K, Fukushi J, Mustelin T, Stallcup WB: Phosphorylation of NG2 proteoglycan by protein kinase C-alpha regulates polarized membrane distribution and cell motility. J Biol Chem 2004, 279:55262-55270.
  • [54]Girolamo F, Dallatomasina A, Rizzi M, Errede M, Walchli T, Mucignat MT, Frei K, Roncali L, Perris R, Virgintino D: Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets. PLoS One 2013, 8:e84883.
  • [55]Bernas MJ, Cardoso FL, Daley SK, Weinand ME, Campos AR, Ferreira AJ, Hoying JB, Witte MH, Brites D, Persidsky Y, Ramirez SH, Brito MA: Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood–brain barrier. Nat Protoc 2010, 5:1265-1272.
  • [56]Tigges U, Welser-Alves JV, Boroujerdi A, Milner R: A novel and simple method for culturing pericytes from mouse brain. Microvasc Res 2012, 84:74-80.
  • [57]Tremaroli V, Backhed F: Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489:242-249.
  • [58]Odegaard JI, Chawla A: Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 2013, 339:172-177.
  • [59]Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH: Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140:918-934.
  • [60]Meraz-Rios MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernandez J, Campos-Pena V: Inflammatory process in Alzheimer’s Disease. Front Integr Neurosci 2013, 7:59.
  • [61]Lentsch AB, Ward PA: Activation and regulation of NFkappaB during acute inflammation. Clin Chem Lab Med 1999, 37:205-208.
  • [62]Li Q, Verma IM: NF-kappaB regulation in the immune system. Nat Rev Immunol 2002, 2:725-734.
  • [63]Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM: Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 2011, 59:242-255.
  • [64]Quan N, Whiteside M, Kim L, Herkenham M: Induction of inhibitory factor kappaBalpha mRNA in the central nervous system after peripheral lipopolysaccharide administration: an in situ hybridization histochemistry study in the rat. Proc Natl Acad Sci U S A 1997, 94:10985-10990.
  • [65]Sizemore N, Agarwal A, Das K, Lerner N, Sulak M, Rani S, Ransohoff R, Shultz D, Stark GR: Inhibitor of kappaB kinase is required to activate a subset of interferon gamma-stimulated genes. Proc Natl Acad Sci U S A 2004, 101:7994-7998.
  • [66]Shultz DB, Rani MR, Fuller JD, Ransohoff RM, Stark GR: Roles of IKK-beta, IRF1, and p65 in the activation of chemokine genes by interferon-gamma. J Interferon Cytokine Res 2009, 29:817-824.
  • [67]Zhang F, Qian L, Flood PM, Shi JS, Hong JS, Gao HM: Inhibition of IkappaB kinase-beta protects dopamine neurons against lipopolysaccharide-induced neurotoxicity. J Pharmacol Exp Ther 2010, 333:822-833.
  • [68]Lee YJ, Choi DY, Choi IS, Kim KH, Kim YH, Kim HM, Lee K, Cho WG, Jung JK, Han SB, Han JY, Nam SY, Yun YW, Jeong JH, Oh KW, Hong JT: Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. J Neuroinflammation 2012, 9:35.
  • [69]Carrillo-de Sauvage MA, Gomez A, Ros CM, Ros-Bernal F, Martin ED, Perez-Valles A, Gallego-Sanchez JM, Fernandez-Villalba E, Barcia C Sr, Barcia C Jr, Herrero MT: CCL2-expressing astrocytes mediate the extravasation of T lymphocytes in the brain. Evidence from patients with glioma and experimental models in vivo. PLoS One 2012, 7:e30762.
  • [70]Sagar D, Lamontagne A, Foss CA, Khan ZK, Pomper MG, Jain P: Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation. J Neuroinflammation 2012, 9:245.
  • [71]Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV: Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. J Cereb Blood Flow Metab 2005, 25:593-606.
  • [72]Tanuma N, Sakuma H, Sasaki A, Matsumoto Y: Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol 2006, 112:195-204.
  • [73]Sui Y, Potula R, Dhillon N, Pinson D, Li S, Nath A, Anderson C, Turchan J, Kolson D, Narayan O, Buch S: Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis. Am J Pathol 2004, 164:1557-1566.
  • [74]Mehla R, Bivalkar-Mehla S, Nagarkatti M, Chauhan A: Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator. J Neuroinflammation 2012, 9:239.
  • [75]Xia MQ, Bacskai BJ, Knowles RB, Qin SX, Hyman BT: Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease. J Neuroimmunol 2000, 108:227-235.
  • [76]Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M: Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 2007, 27:687-694.
  • [77]Morris JG, Duffis EJ, Fisher M: Cardiac workup of ischemic stroke: can we improve our diagnostic yield? Stroke 2009, 40:2893-2898.
  • [78]Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C: Pericytes regulate the blood–brain barrier. Nature 2010, 468:557-561.
  • [79]Shimizu F, Sano Y, Abe MA, Maeda T, Ohtsuki S, Terasaki T, Kanda T: Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol 2011, 226:255-266.
  • [80]Dohgu S, Banks WA: Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood–brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk. Fluids Barriers CNS 2013, 10:23.
  • [81]Kim JA, Tran ND, Li Z, Yang F, Zhou W, Fisher MJ: Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab 2006, 26:209-217.
  • [82]Roberts TK, Eugenin EA, Lopez L, Romero IA, Weksler BB, Couraud PO, Berman JW: CCL2 disrupts the adherens junction: implications for neuroinflammation. Lab Invest 2012, 92:1213-1233.
  • [83]Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010, 68:409-427.
  • [84]Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV: Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol 2013, 125:111-120.
  • [85]Erickson MA, Banks WA: Blood–brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 2013, 33:1500-1513.
  • [86]Marchi N, Granata T, Ghosh C, Janigro D: Blood–brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia 2012, 53:1877-1886.
  • [87]Indraccolo S, Pfeffer U, Minuzzo S, Esposito G, Roni V, Mandruzzato S, Ferrari N, Anfosso L, Dell’Eva R, Noonan DM, Chieco-Bianchi L, Albini A, Amadori A: Identification of genes selectively regulated by IFNs in endothelial cells. J Immunol 2007, 178:1122-1135.
  • [88]Murakami M, Hirano T: The pathological and physiological roles of IL-6 amplifier activation. Int J Biol Sci 2012, 8:1267-1280.
  • [89]Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, Matsushima K: Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 1994, 56:559-564.
  • [90]Lee MS, Kim B, Oh GT, Kim YJ: OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7. Nat Immunol 2013, 14:346-355.
  • [91]Perera PY, Lichy JH, Waldmann TA, Perera LP: The role of interleukin-15 in inflammation and immune responses to infection: implications for its therapeutic use. Microbes Infect 2012, 14:247-261.
  • [92]Netea MG, Azam T, Ferwerda G, Girardin SE, Walsh M, Park JS, Abraham E, Kim JM, Yoon DY, Dinarello CA, Kim SH: IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. Proc Natl Acad Sci U S A 2005, 102:16309-16314.
  • [93]Hunt D, Raivich G, Anderson PN: Activating transcription factor 3 and the nervous system. Front Mol Neurosci 2012, 5:7.
  • [94]Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H, Aderem A: Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 2006, 441:173-178.
  • [95]Bonda DJ, Mailankot M, Stone JG, Garrett MR, Staniszewska M, Castellani RJ, Siedlak SL, Zhu X, Lee HG, Perry G, Nagaraj RH, Smith MA: Indoleamine 2,3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer’s disease. Redox Rep 2010, 15:161-168.
  • [96]Owens GC, Huynh MN, Chang JW, McArthur DL, Hickey MJ, Vinters HV, Mathern GW, Kruse CA: Differential expression of interferon-gamma and chemokine genes distinguishes Rasmussen encephalitis from cortical dysplasia and provides evidence for an early Th1 immune response. J Neuroinflammation 2013, 10:56.
  • [97]Wen X, Kudo T, Payne L, Wang X, Rodgers L, Suzuki Y: Predominant interferon-gamma-mediated expression of CXCL9, CXCL10, and CCL5 proteins in the brain during chronic infection with Toxoplasma gondii in BALB/c mice resistant to development of toxoplasmic encephalitis. J Interferon Cytokine Res 2010, 30:653-660.
  • [98]Fil D, Borysiewicz E, Konat GW: A broad upregulation of cerebral chemokine genes by peripherally-generated inflammatory mediators. Metab Brain Dis 2011, 26:49-59.
  • [99]Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra F, Romagnani S, Serio M, Romagnani P: An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 2003, 197:1537-1549.
  • [100]Yates-Binder CC, Rodgers M, Jaynes J, Wells A, Bodnar RJ, Turner T: An IP-10 (CXCL10)-derived peptide inhibits angiogenesis. PLoS One 2012, 7:e40812.
  • [101]Bodnar RJ, Rodgers ME, Chen WC, Wells A: Pericyte regulation of vascular remodeling through the CXC receptor 3. Arterioscler Thromb Vasc Biol 2013, 33:2818-2829.
  • [102]Balabanov R, Beaumont T, Dore-Duffy P: Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J Neurosci Res 1999, 55:578-587.
  • [103]Bryan KJ, Zhu X, Harris PL, Perry G, Castellani RJ, Smith MA, Casadesus G: Expression of CD74 is increased in neurofibrillary tangles in Alzheimer’s disease. Mol Neurodegener 2008, 3:13.
  • [104]Wan G, Zhaorigetu S, Liu Z, Kaini R, Jiang Z, Hu CA: Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J Biol Chem 2008, 283:21540-21549.
  • [105]Suk K, Chang I, Kim YH, Kim S, Kim JY, Kim H, Lee MS: Interferon gamma (IFNgamma) and tumor necrosis factor alpha synergism in ME-180 cervical cancer cell apoptosis and necrosis. IFNgamma inhibits cytoprotective NF-kappa B through STAT1/IRF-1 pathways. J Biol Chem 2001, 276:13153-13159.
  • [106]Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC: Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood–brain barrier function in wild-type mice. J Neuroinflammation 2013, 10:73.
  • [107]Flynn JM, Melov S: SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med 2013, 62:4-12.
  • [108]Esposito L, Raber J, Kekonius L, Yan F, Yu GQ, Bien-Ly N, Puolivali J, Scearce-Levie K, Masliah E, Mucke L: Reduction in mitochondrial superoxide dismutase modulates Alzheimer’s disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J Neurosci 2006, 26:5167-5179.
  • [109]Jung JE, Kim GS, Chen H, Maier CM, Narasimhan P, Song YS, Niizuma K, Katsu M, Okami N, Yoshioka H, Sakata H, Goeders CE, Chan PH: Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol 2010, 41:172-179.
  • [110]Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ: Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci U S A 1998, 95:14500-14505.
  • [111]Guyon A, Nahon JL: Multiple actions of the chemokine stromal cell-derived factor-1alpha on neuronal activity. J Mol Endocrinol 2007, 38:365-376.
  • [112]Hiasa K, Ishibashi M, Ohtani K, Inoue S, Zhao Q, Kitamoto S, Sata M, Ichiki T, Takeshita A, Egashira K: Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 2004, 109:2454-2461.
  • [113]Zemani F, Silvestre JS, Fauvel-Lafeve F, Bruel A, Vilar J, Bieche I, Laurendeau I, Galy-Fauroux I, Fischer AM, Boisson-Vidal C: Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler Thromb Vasc Biol 2008, 28:644-650.
  • [114]Peng T, Zhu J, Hwangbo Y, Corey L, Bumgarner RE: Independent and cooperative antiviral actions of beta interferon and gamma interferon against herpes simplex virus replication in primary human fibroblasts. J Virol 2008, 82:1934-1945.
  • [115]Munoz-Erazo L, Natoli R, Provis JM, Madigan MC, King NJ: Microarray analysis of gene expression in West Nile virus-infected human retinal pigment epithelium. Mol Vis 2012, 18:730-743.
  文献评价指标  
  下载次数:63次 浏览次数:15次