期刊论文详细信息
Journal of Neuroinflammation
Protein kinase C activation mediates interferon-β-induced neuronal excitability changes in neocortical pyramidal neurons
Ulf Strauss1  Konstantin Stadler2  Olivia Reetz1 
[1]Institute of Cell Biology & Neurobiology, Charité ¿ Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
[2]Industrial Ecology Programme, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
关键词: NEURON;    Layer 5;    Excitability modulation;    Nervous - Immune system interactions;    Neuronal inflammation;    IFN;    PKC;   
Others  :  1150295
DOI  :  10.1186/s12974-014-0185-4
 received in 2014-06-12, accepted in 2014-10-13,  发布年份 2014
PDF
【 摘 要 】

Background

Cytokines are key players in the interactions of the immune and nervous systems. Recently, we showed that such interplay is mediated by type I interferons (IFNs), which elevate the excitability of neocortical pyramidal neurons. A line of indirect evidence suggested that modulation of multiple ion channels underlies the effect. However, which currents are principally involved and how the IFN signaling cascade is linked to the respective ion channels remains elusive.

Methods

We tested several single and combined ionic current modulations using an in silico model of a neocortical layer 5 neuron. Subsequently we investigated resulting predictions by whole-cell patch-clamp recordings in layer 5 neurons of ex vivo neocortical rat brain slices pharmacologically reproducing or prohibiting neuronal IFN effects.

Results

The amount and type of modulation necessary to replicate IFN effects in silico suggested protein kinase C (PKC) activation as link between the type I IFN signaling and ion channel modulations. In line with this, PKC activation with 4?-phorbol 12-myristate 13-acetate (4?-PMA) or Bryostatin1 augmented the excitability of neocortical layer 5 neurons comparable to IFN-? in our ex vivo recordings. In detail, both PKC activators attenuated the rheobase and increased the input-output gain as well as the input resistance, thereby augmenting the neuronal excitability. Similar to IFN-? they also left the threshold of action potential generation unaffected. In further support of PKC mediating type I IFN effects, IFN-?, 4?-PMA and Bryostatin1 reduced the amplitude of post-train after-hyperpolarizations in a similar manner. In conjunction with this finding, IFN-? reduced M-currents, which contribute to after-hyperpolarizations and are modulated by PKC. Finally, blocking PKC activation with GF109203X at the catalytic site or calphostin C at the regulatory site prevented the main excitatory effects of IFN-?.

Conclusion

Multiple ion channel modulations underlie the neuromodulatory effect of type I IFNs. PKC activation is both sufficient and necessary for mediating the effect, and links the IFN signaling cascade to the intrinsic ion channels. Therefore, we regard PKC activation as unitary mechanism for the neuromodulatory potential of type I IFNs in neocortical neurons.

【 授权许可】

   
2014 Reetz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405162607933.pdf 2320KB PDF download
Figure 5. 64KB Image download
Figure 4. 57KB Image download
Figure 3. 46KB Image download
Figure 2. 90KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Delhaye S, Paul S, Blakqori G, Minet M, Weber F, Staeheli P, Michiels T: Neurons produce type I interferon during viral encephalitis. Proc Natl Acad Sci U S A 2006, 103:7835-7840.
  • [2]Gough DJ, Levy DE, Johnstone RW, Clarke CJ: IFNgamma signaling - does it mean JAK-STAT? Cytokine Growth Factor Rev 2008, 19:383-394.
  • [3]Redig AJ, Sassano A, Majchrzak-Kita B, Katsoulidis E, Liu H, Altman JK, Fish EN, Wickrema A, Platanias LC: Activation of protein kinase C{eta} by type I interferons. J Biol Chem 2009, 284:10301-10314.
  • [4]Savarin C, Bergmann CC: Neuroimmunology of central nervous system viral infections: the cells, molecules and mechanisms involved. Curr Opin Pharmacol 2008, 8:472-479.
  • [5]Hadjilambreva G, Mix E, Rolfs A, Muller J, Strauss U: Neuromodulation by a cytokine: interferon-beta differentially augments neocortical neuronal activity and excitability. J Neurophysiol 2005, 93:843-852.
  • [6]Goldman MS, Golowasch J, Marder E, Abbott LF: Global structure, robustness, and modulation of neuronal models. J Neurosci 2001, 21:5229-5238.
  • [7]Darnell JE Jr, Kerr IM, Stark GR: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264:1415-1421.
  • [8]Uddin S, Chamdin A, Platanias LC: Interaction of the transcriptional activator Stat-2 with the type I interferon receptor. J Biol Chem 1995, 270:24627-24630.
  • [9]Uddin S, Sassano A, Deb DK, Verma A, Majchrzak B, Rahman A, Malik AB, Fish EN, Platanias LC: Protein kinase C-delta (PKC-delta) is activated by type I interferons and mediates phosphorylation of Stat1 on serine 727. J Biol Chem 2002, 277:14408-14416.
  • [10]Kaur S, Sassano A, Dolniak B, Joshi S, Majchrzak-Kita B, Baker DP, Hay N, Fish EN, Platanias LC: Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc Natl Acad Sci U S A 2008, 105:4808-4813.
  • [11]Levitan IB: Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 1994, 56:193-212.
  • [12]Lee SY, Choi HK, Kim ST, Chung S, Park MK, Cho JH, Ho WK, Cho H: Cholesterol inhibits M-type K?+?channels via protein kinase C-dependent phosphorylation in sympathetic neurons. J Biol Chem 2010, 285:10939-10950.
  • [13]Fogle KJ, Lyashchenko AK, Turbendian HK, Tibbs GR: HCN pacemaker channel activation is controlled by acidic lipids downstream of diacylglycerol kinase and phospholipase A2. J Neurosci 2007, 27:2802-2814.
  • [14]Reetz O, Strauss U: Protein kinase C activation inhibits rat and human hyperpolarization activated cyclic nucleotide gated channel (HCN)1¿mediated current in mammalian cells. Cell Physiol Biochem 2013, 31:532-541.
  • [15]Zhou XB, Wulfsen I, Utku E, Sausbier U, Sausbier M, Wieland T, Ruth P, Korth M: Dual role of protein kinase C on BK channel regulation. Proc Natl Acad Sci U S A 2010, 107:8005-8010.
  • [16]Curia G, Aracri P, Sancini G, Mantegazza M, Avanzini G, Franceschetti S: Protein-kinase C-dependent phosphorylation inhibits the effect of the antiepileptic drug topiramate on the persistent fraction of sodium currents. Neuroscience 2004, 127:63-68.
  • [17]Stadler K, Bierwirth C, Stoenica L, Battefeld A, Reetz O, Mix E, Schuchmann S, Velmans T, Rosenberger K, Brauer AU, Lehnardt S, Nitsch R, Budt M, Wolff T, Kole MH, Strauss U: Elevation in type I interferons inhibits HCN1 and slows cortical neuronal oscillations. Cereb Cortex 2014, 24:199-210.
  • [18]Heremans H, Billiau A, De Somer P: Interferon in experimental viral infections in mice: tissue interferon levels resulting from the virus infection and from exogenous interferon therapy. Infect Immun 1980, 30:513-522.
  • [19]Stuart G, Spruston N: Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 1998, 18:3501-3510.
  • [20]Kole MH, Hallermann S, Stuart GJ: Single I-h channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J Neurosci 2006, 26:1677-1687.
  • [21]Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ: Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 2008, 11:178-186.
  • [22]Shah MM, Migliore M, Valencia I, Cooper EC, Brown DA: Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 2008, 105:7869-7874.
  • [23]Acker CD, Antic SD: Quantitative assessment of the distributions of membrane conductances involved in action potential back propagation along basal dendrites. J Neurophysiol 2009, 101:1524-1541.
  • [24]Uebachs M, Opitz T, Royeck M, Dickhof G, Horstmann MT, Isom LL, Beck H: Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci 2010, 30:8489-8501.
  • [25]Migliore M, Hoffman DA, Magee JC, Johnston D: Role of an A-type K?+?conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 1999, 7:5-15.
  • [26]Carnevale NT, Hines ML: The NEURON Book. Cambridge University Press, Cambridge, UK; 2006.
  • [27]Sun MK, Alkon DL: Bryostatin-1: pharmacology and therapeutic potential as a CNS drug. CNS Drug Reviews 2006, 12:1-8.
  • [28]Hoshi N, Zhang JS, Omaki M, Takeuchi T, Yokoyama S, Wanaverbecq N, Langeberg LK, Yoneda Y, Scott JD, Brown DA, Higashida H: AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci 2003, 6:564-571.
  • [29]Brown DA, Passmore GM: Neural KCNQ (Kv7) channels. Br J Pharmacol 2009, 156:1185-1195.
  • [30]George MS, Abbott LF, Siegelbaum SA: HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K(+) channels. Nat Neurosci 2009, 12:577-584.
  • [31]Velumian AA, Zhang L, Pennefather P, Carlen PL: Reversible inhibition of IK, IAHP, Ih and ICa currents by internally applied gluconate in rat hippocampal pyramidal neurones. Pflugers Arch 1997, 433:343-350.
  • [32]Henze DA, Buzsaki G: Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience 2001, 105:121-130.
  • [33]Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F, Duhamel L, Charon D, Kirilovsky J: The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 1991, 266:15771-15781.
  • [34]Sciorra VA, Hammond SM, Morris AJ: Potent direct inhibition of mammalian phospholipase D isoenzymes by calphostin-c. Biochemistry 2001, 40:2640-2646.
  • [35]Kobayashi E, Nakano H, Morimoto M, Tamaoki T: Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 1989, 159:548-553.
  • [36]Gopalakrishna R, Jaken S: Protein kinase C signaling and oxidative stress. Free Radic Biol Med 2000, 28:1349-1361.
  • [37]Pedarzani P, Storm JF: PKA mediates the effects of monoamine transmitters on the K?+?current underlying the slow spike frequency adaptation in hippocampal neurons. Neuron 1993, 11:1023-1035.
  • [38]Astman N, Gutnick MJ, Fleidervish IA: Activation of protein kinase C increases neuronal excitability by regulating persistent Na?+?current in mouse neocortical slices. J Neurophysiol 1998, 80:1547-1551.
  • [39]Cantrell AR, Catterall WA: Neuromodulation of Na?+?channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2001, 2:397-407.
  • [40]Franceschetti S, Taverna S, Sancini G, Panzica F, Lombardi R, Avanzini G: Protein kinase C-dependent modulation of Na?+?currents increases the excitability of rat neocortical pyramidal neurones. J Physiol 2000, 528:291-304.
  • [41]Rangel A, Sanchez-Armass S, Meza U: Protein kinase C-mediated inhibition of recombinant T-type Cav3.2 channels by neurokinin 1 receptors. Mol Pharmacol 2010, 77:202-210.
  • [42]Zheng M, Wang Y, Kang L, Shimaoka T, Marni F, Ono K: Intracellular Ca(2+)- and PKC-dependent upregulation of T-type Ca(2+) channels in LPC-stimulated cardiomyocytes. J Mol Cell Cardiol 2010, 48:131-139.
  • [43]Battefeld A, Tran BT, Gavrilis J, Cooper EC, Kole MH: Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons. J Neurosci 2014, 34:3719-3732.
  • [44]Zhao P, Xue J, Gu XQ, Haddad GG, Xia Y: Intermittent hypoxia modulates Na?+?channel expression in developing mouse brain. Int J Dev Neurosci 2005, 23:327-333.
  • [45]Selvatici R, Marino S, Piubello C, Rodi D, Beani L, Gandini E, Siniscalchi A: Protein kinase C activity, translocation, and selective isoform subcellular redistribution in the rat cerebral cortex after in vitro ischemia. J Neurosci Res 2003, 71:64-71.
  • [46]Wu-Zhang AX, Newton AC: Protein kinase C pharmacology: refining the toolbox. Biochem J 2013, 452:195-209.
  • [47]Dantzer R, O¿Connor JC, Freund GG, Johnson RW, Kelley KW: From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008, 9:46-56.
  • [48]Schiepers OJ, Wichers MC, Maes M: Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 2005, 29:201-217.
  • [49]Camacho-Arroyo I, Lopez-Griego L, Morales-Montor J: The role of cytokines in the regulation of neurotransmission. Neuroimmunomodulation 2009, 16:1-12.
  • [50]McAfoose J, Baune BT: Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev 2009, 33:355-366.
  • [51]Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, Raasch J, Merkler D, Detje C, Gutcher I, Mages J, Lang R, Martin R, Gold R, Becher B, Bruck W, Kalinke U: Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 2008, 28:675-686.
  • [52]Paul S, Ricour C, Sommereyns C, Sorgeloos F, Michiels T: Type I interferon response in the central nervous system. Biochimie 2007, 89:770-778.
  • [53]Detje CN, Meyer T, Schmidt H, Kreuz D, Rose JK, Bechmann I, Prinz M, Kalinke U: Local type I IFN receptor signaling protects against virus spread within the central nervous system. J Immunol 2009, 182:2297-2304.
  • [54]Brager DH, Thompson SM: Activity-dependent release of adenosine contributes to short-term depression at CA3-CA1 synapses in rat hippocampus. J Neurophysiol 2003, 89:22-26.
  • [55]Amodio P, De Toni EN, Cavalletto L, Mapelli D, Bernardinello E, Del Piccolo F, Bergamelli C, Costanzo R, Bergamaschi F, Poma SZ, Chemello L, Gatta A, Perini G: Mood, cognition and EEG changes during interferon alpha (alpha-IFN) treatment for chronic hepatitis C. J AffectDisord 2005, 84:93-98.
  • [56]Wang X, Hu J, She Y, Smith GM, Xu XM: Cortical PKC inhibition promotes axonal regeneration of the corticospinal tract and forelimb functional recovery after cervical dorsal spinal hemisection in adult rats. Cereb Cortex 2014, 24:3069-3079.
  • [57]Garrett AM, Schreiner D, Lobas MA, Weiner JA: Gamma-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron 2012, 74:269-276.
  文献评价指标  
  下载次数:0次 浏览次数:2次