期刊论文详细信息
Clinical Epigenetics
Identifying diagnostic DNA methylation profiles for facioscapulohumeral muscular dystrophy in blood and saliva using bisulfite sequencing
Peter L Jones4  Oliver D King4  Johnny S Salameh3  Colin Quinn1  Peter B Kang5  Diane McKenna-Yasek3  Peter C Sapp3  Chi Yan6  Takako I Jones2 
[1] Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce St, 3 Gates, Philadelphia, PA 19104, USA;The Wellstone Program & The Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA;The Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA;The Eunice Kennedy Shriver National Institute of Child Health and Human Development Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA;Department of Pediatrics, Division of Pediatric Neurology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32607, USA;Key Lab of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
关键词: FSHD2;    FSHD1;    Facioscapulohumeral muscular dystrophy;    Epigenetics;    DUX4;    Disease diagnostics;    D4Z4;    DNA methylation;    Bisulfite sequencing;   
Others  :  1092808
DOI  :  10.1186/1868-7083-6-23
 received in 2014-07-10, accepted in 2014-10-17,  发布年份 2014
PDF
【 摘 要 】

Background

Facioscapulohumeral muscular dystrophy (FSHD) is linked to chromatin relaxation due to epigenetic changes at the 4q35 D4Z4 macrosatellite array. Molecular diagnostic criteria for FSHD are complex and involve analysis of high molecular weight (HMW) genomic DNA isolated from lymphocytes, followed by multiple restriction digestions, pulse-field gel electrophoresis (PFGE), and Southern blotting. A subject is genetically diagnosed as FSHD1 if one of the 4q alleles shows a contraction in the D4Z4 array to below 11 repeats, while maintaining at least 1 repeat, and the contraction is in cis with a disease-permissive A-type subtelomere. FSHD2 is contraction-independent and cannot be diagnosed or excluded by this common genetic diagnostic procedure. However, FSHD1 and FSHD2 are linked by epigenetic deregulation, assayed as DNA hypomethylation, of the D4Z4 array on FSHD-permissive alleles. We have developed a PCR-based assay that identifies the epigenetic signature for both types of FSHD, distinguishing FSHD1 from FSHD2, and can be performed on genomic DNA isolated from blood, saliva, or cultured cells.

Results

Samples were obtained from healthy controls or patients clinically diagnosed with FSHD, and include both FSHD1 and FSHD2. The genomic DNAs were subjected to bisulfite sequencing analysis for the distal 4q D4Z4 repeat with an A-type subtelomere and the DUX4 5’ promoter region. We compared genomic DNA isolated from saliva and blood from the same individuals and found similar epigenetic signatures. DNA hypomethylation was restricted to the contracted 4qA chromosome in FSHD1 patients while healthy control subjects were hypermethylated. Candidates for FSHD2 showed extreme DNA hypomethylation on the 4qA DUX4 gene body as well as all analyzed DUX4 5’ sequences. Importantly, our assay does not amplify the D4Z4 arrays with non-permissive B-type subtelomeres and accurately excludes the arrays with non-permissive A-type subtelomeres.

Conclusions

We have developed an assay to identify changes in DNA methylation on the pathogenic distal 4q D4Z4 repeat. We show that the DNA methylation profile of saliva reflects FSHD status. This assay can distinguish FSHD from healthy controls, differentiate FSHD1 from FSHD2, does not require HMW genomic DNA or PFGE, and can be performed on either cultured cells, tissue, blood, or saliva samples.

【 授权许可】

   
2014 Jones et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150130152845640.pdf 3766KB PDF download
Figure 8. 85KB Image download
Figure 7. 85KB Image download
Figure 6. 207KB Image download
Figure 5. 64KB Image download
Figure 4. 299KB Image download
Figure 3. 55KB Image download
Figure 2. 94KB Image download
Figure 1. 127KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Padberg GW: Facioscapulohumeral Disease. Leiden, The Netherlands: Leiden University; 1982. [[thesis]]
  • [2]Tawil R, Van Der Maarel SM: Facioscapulohumeral muscular dystrophy. Muscle Nerve 2006, 34:1-15.
  • [3]Deenen JC, Arnts H, van der Maarel SM, Padberg GW, Verschuuren JJ, Bakker E, Weinreich SS, Verbeek AL, van Engelen BG: Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology 2014, 83(12):1056-1059.
  • [4]Brouwer OF, Padberg GW, Wijmenga C, Frants RR: Facioscapulohumeral muscular dystrophy in early childhood. Arch Neurol 1994, 51:387-394.
  • [5]Chen TH, Lai YH, Lee PL, Hsu JH, Goto K, Hayashi YK, Nishino I, Lin CW, Shih HH, Huang CC, Liang WC, Wang WF, Jong YJ: Infantile facioscapulohumeral muscular dystrophy revisited: Expansion of clinical phenotypes in patients with a very short EcoRI fragment. Neuromuscul Disord 2013, 23(4):298-305.
  • [6]Jones TI, Chen JC, Rahimov F, Homma S, Arashiro P, Beermann ML, King OD, Miller JB, Kunkel LM, Emerson CP Jr, Wagner KR, Jones PL: Facioscapulohumeral muscular dystrophy family studies of DUX4 expression: evidence for disease modifiers and a quantitative model of pathogenesis. Hum Mol Genet 2012, 21:4419-4430.
  • [7]Ricci G, Scionti I, Sera F, Govi M, D’Amico R, Frambolli I, Mele F, Filosto M, Vercelli L, Ruggiero L, Berardinelli A, Angelini C, Antonini G, Bucci E, Cao M, Daolio J, Di Muzio A, Di Leo R, Galluzzi G, Iannaccone E, Maggi L, Maruotti V, Moggio M, Mongini T, Morandi L, Nikolic A, Pastorello E, Ricci E, Rodolico C, Santoro L, et al.: Large scale genotype-phenotype analyses indicate that novel prognostic tools are required for families with facioscapulohumeral muscular dystrophy. Brain 2013, 136:3408-3417.
  • [8]Schaap M, Lemmers RJ, Maassen R, van der Vliet PJ, Hoogerheide LF, van Dijk HK, Basturk N, de Knijff P, van der Maarel SM: Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions. BMC Genomics 2013, 14:143. BioMed Central Full Text
  • [9]Wijmenga C, Frants RR, Brouwer OF, Moerer P, Weber JL, Padberg GW: Location of facioscapulohumeral muscular dystrophy gene on chromosome 4. Lancet 1990, 336:651-653.
  • [10]Wijmenga C, Hewitt JE, Sandkuijl LA, Clark LN, Wright TJ, Dauwerse HG, Gruter AM, Hofker MH, Moerer P, Williamson R, van Ommen GJB, Padberg GW, Frants RR: Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 1992, 2:26-30.
  • [11]van Deutekom JC, Wijmenga C, van Tienhoven EA, Gruter AM, Hewitt JE, Padberg GW, van Ommen GJ, Hofker MH, Frants RR: FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum Mol Genet 1993, 2:2037-2042.
  • [12]Lemmers RJ, de Kievit P, Sandkuijl L, Padberg GW, van Ommen GJ, Frants RR, van der Maarel SM: Facioscapulohumeral muscular dystrophy is uniquely associated with one of the two variants of the 4q subtelomere. Nat Genet 2002, 32:235-236.
  • [13]Lemmers RJ, Wohlgemuth M, Frants RR, Padberg GW, Morava E, van der Maarel SM: Contractions of D4Z4 on 4qB subtelomeres do not cause facioscapulohumeral muscular dystrophy. Am J Hum Genet 2004, 75:1124-1130.
  • [14]Lemmers RJ, Wohlgemuth M, van der Gaag KJ, van der Vliet PJ, van Teijlingen CM, de Knijff P, Padberg GW, Frants RR, van der Maarel SM: Specific sequence variations within the 4q35 region are associated with facioscapulohumeral muscular dystrophy. Am J Hum Genet 2007, 81:884-894.
  • [15]Lemmers RJ, van der Vliet PJ, Klooster R, Sacconi S, Camano P, Dauwerse JG, Snider L, Straasheijm KR, van Ommen GJ, Padberg GW, Miller DG, Tapscott SJ, Tawil R, Frants RR, van der Maarel SM: A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 2010, 329:1650-1653.
  • [16]de Greef JC, Lemmers RJ, Camano P, Day JW, Sacconi S, Dunand M, van Engelen BG, Kiuru-Enari S, Padberg GW, Rosa AL, Desnuelle C, Spuler S, Tarnopolsky M, Venance SL, Frants RR, van der Maarel SM, Tawil R: Clinical features of facioscapulohumeral muscular dystrophy 2. Neurology 2010, 75:1548-1554.
  • [17]van Overveld PG, Lemmers RJ, Sandkuijl LA, Enthoven L, Winokur ST, Bakels F, Padberg GW, van Ommen GJ, Frants RR, van der Maarel SM: Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat Genet 2003, 35:315-317.
  • [18]Lemmers RJ, van der Vliet PJ, van der Gaag KJ, Zuniga S, Frants RR, de Knijff P, van der Maarel SM: Worldwide population analysis of the 4q and 10q subtelomeres identifies only four discrete interchromosomal sequence transfers in human evolution. Am J Hum Genet 2010, 86:364-377.
  • [19]de Greef JC, Lemmers RJ, van Engelen BG, Sacconi S, Venance SL, Frants RR, Tawil R, van der Maarel SM: Common epigenetic changes of D4Z4 in contraction-dependent and contraction-independent FSHD. Hum Mutat 2009, 30:1449-1459.
  • [20]van Overveld PG, Enthoven L, Ricci E, Rossi M, Felicetti L, Jeanpierre M, Winokur ST, Frants RR, Padberg GW, van der Maarel SM: Variable hypomethylation of D4Z4 in facioscapulohumeral muscular dystrophy. Ann Neurol 2005, 58:569-576.
  • [21]Lemmers RJ, Tawil R, Petek LM, Balog J, Block GJ, Santen GW, Amell AM, van der Vliet PJ, Almomani R, Straasheijm KR, Krom YD, Klooster R, Sun Y, den Dunnen JT, Helmer Q, Donlin-Smith CM, Padberg GW, van Engelen BG, de Greef JC, Aartsma-Rus AM, Frants RR, de Visser M, Desnuelle C, Sacconi S, Filippova GN, Bakker B, Bamshad MJ, Tapscott SJ, Miller DG, van der Maarel SM: Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet 2012, 44:1370-1374.
  • [22]Lemmers RJL, de Kievit P, van Geel M, van der Wielen MJ, Bakker E, Padberg GW, Frants RR, van der Maarel SM: Complete allele information in the diagnosis of facioscapulohumeral muscular dystrophy by triple DNA analysis. Ann Neurol 2001, 50:816-819.
  • [23]Wijmenga C, Frants RR, Hewitt JE, van Deutekom JC, van Geel M, Wright TJ, Padberg GW, Hofker MH, van Ommen GJ: Molecular genetics of facioscapulohumeral muscular dystrophy. Neuromuscul Disord 1993, 3:487-491.
  • [24]Nguyen K, Walrafen P, Bernard R, Attarian S, Chaix C, Vovan C, Renard E, Dufrane N, Pouget J, Vannier A, Bensimon A, Lévy N: Molecular combing reveals allelic combinations in facioscapulohumeral dystrophy. Ann Neurol 2011, 70:627-633.
  • [25]Lemmers RJ, van der Maarel SM, van Deutekom JC, van der Wielen MJ, Deidda G, Dauwerse HG, Hewitt J, Hofker M, Bakker E, Padberg GW, Frants RR: Inter- and intrachromosomal sub-telomeric rearrangements on 4q35: implications for facioscapulohumeral muscular dystrophy (FSHD) aetiology and diagnosis. Hum Mol Genet 1998, 7:1207-1214.
  • [26]Lemmers RJ, van der Wielen MJ, Bakker E, Padberg GW, Frants RR, van der Maarel SM: Somatic mosaicism in FSHD often goes undetected. Ann Neurol 2004, 55:845-850.
  • [27]Mitsuhashi S, Boyden SE, Estrella EA, Jones TI, Rahimov F, Yu TW, Darras BT, Amato AA, Folkerth RD, Jones PL, Kunkel LM, Kang PB: Exome sequencing identifies a novel SMCHD1 mutation in facioscapulohumeral muscular dystrophy 2. Neuromuscul Disord 2013, 23:975-980.
  • [28]Winston J, Duerden L, Mort M, Frayling IM, Rogers MT, Upadhyaya M: Identification of two novel SMCHD1 sequence variants in families with FSHD-like muscular dystrophy. Eur J Hum Genet 2014. In press
  • [29]Hartweck LM, Anderson LJ, Lemmers RJ, Dandapat A, Toso EA, Dalton JC, Tawil R, Day JW, van der Maarel SM, Kyba M: A focal domain of extreme demethylation within D4Z4 in FSHD2. Neurology 2013, 80:392-399.
  • [30]Zeng W, Chen YY, Newkirk DA, Wu B, Balog J, Kong X, Ball AR Jr, Zanotti S, Tawil R, Hashimoto N, Mortazavi A, van der Maarel SM, Yokomori K: Genetic and epigenetic characteristics of FSHD-associated 4q and 10q D4Z4 that are distinct from non-4q/10q D4Z4 homologs. Hum Mutat 2014, 35:998-1010.
  • [31]Ottaviani A, Schluth-Bolard C, Gilson E, Magdinier F: D4Z4 as a prototype of CTCF and lamins-dependent insulator in human cells. Nucleus 2010, 1:30-36.
  • [32]Wu HC, Wang Q, Chung WK, Andrulis IL, Daly MB, John EM, Keegan TH, Knight J, Bradbury AR, Kappil MA, Gurvich I, Santella RM, Terry MB: Correlation of DNA methylation levels in blood and saliva DNA in young girls of the LEGACY study. Epigenetics 2014, 9(7):929-933.
  • [33]Himeda CL, Debarnot C, Homma S, Beermann ML, Miller JB, Jones PL, Jones TI: Myogenic enhancers regulate expression of the facioscapulohumeral muscular dystrophy associated DUX4 gene. Mol Cell Biol 2014, 34:1942-1955.
  • [34]Gaillard MC, Roche S, Dion C, Tasmadjian A, Bouget G, Salort-Campana E, Vovan C, Chaix C, Broucqsault N, Morere J, Puppo F, Bartoli M, Levy N, Bernard R, Attarian S, Nguyen K, Magdinier F: Differential DNA methylation of the D4Z4 repeat in patients with FSHD and asymptomatic carriers. Neurology 2014, 83(8):733-742.
  • [35]Homma S, Chen JC, Rahimov F, Beermann ML, Hanger K, Bibat GM, Wagner KR, Kunkel LM, Emerson CP Jr, Miller JB: A unique library of myogenic cells from facioscapulohumeral muscular dystrophy subjects and unaffected relatives: family, disease and cell function. Eur J Hum Genet 2012, 20:404-410.
  • [36]Rohde C, Zhang Y, Reinhardt R, Jeltsch A: BISMA–fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics 2010, 11:230. BioMed Central Full Text
  文献评价指标  
  下载次数:121次 浏览次数:10次