| Clinical Proteomics | |
| Aberrant glycosylation associated with enzymes as cancer biomarkers | |
| Daniel W Chan1  Danni L Meany1  | |
| [1] Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA | |
| 关键词: Glycan; Glycoprotein; Glycosyltransferases; Cancer Biomarkers; Aberrant Glycosylation; Enzyme; | |
| Others : 1026373 DOI : 10.1186/1559-0275-8-7 |
|
| received in 2011-04-21, accepted in 2011-06-03, 发布年份 2011 | |
PDF
|
|
【 摘 要 】
Background
One of the new roles for enzymes in personalized medicine builds on a rational approach to cancer biomarker discovery using enzyme-associated aberrant glycosylation. A hallmark of cancer, aberrant glycosylation is associated with differential expressions of enzymes such as glycosyltransferase and glycosidases. The aberrant expressions of the enzymes in turn cause cancer cells to produce glycoproteins with specific cancer-associated aberrations in glycan structures.
Content
In this review we provide examples of cancer biomarker discovery using aberrant glycosylation in three areas. First, changes in glycosylation machinery such as glycosyltransferases/glycosidases could be used as cancer biomarkers. Second, most of the clinically useful cancer biomarkers are glycoproteins. Discovery of specific cancer-associated aberrations in glycan structures of these existing biomarkers could improve their cancer specificity, such as the discovery of AFP-L3, fucosylated glycoforms of AFP. Third, cancer-associated aberrations in glycan structures provide a compelling rationale for discovering new biomarkers using glycomic and glycoproteomic technologies.
Summary
As a hallmark of cancer, aberrant glycosylation allows for the rational design of biomarker discovery efforts. But more important, we need to translate these biomarkers from discovery to clinical diagnostics using good strategies, such as the lessons learned from translating the biomarkers discovered using proteomic technologies to OVA 1, the first FDA-cleared In Vitro Diagnostic Multivariate Index Assay (IVDMIA). These lessons, providing important guidance in current efforts in biomarker discovery and translation, are applicable to the discovery of aberrant glycosylation associated with enzymes as cancer biomarkers as well.
【 授权许可】
2011 Meany and Chan; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140903120931654.pdf | 244KB |
【 参考文献 】
- [1]Meany DL, Sokoll LJ, Chan DW: Early Detection of Cancer: Immunoassays for Plasma Tumor Markers. Expert Opin Med Diagn 2009, 3(6):597-605.
- [2]Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, et al.: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999, 17(9):2639-2648.
- [3]Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al.: Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002, 20(3):719-726.
- [4]O'Grady P, Lijnen HR, Duffy MJ: Multiple forms of plasminogen activator in human breast tumors. Cancer Res 1985, 45(12 Pt 1):6216-6218.
- [5]Duffy MJ, O'Grady P, Devaney D, O'Siorain L, Fennelly JJ, Lijnen HJ: Urokinase-plasminogen activator, a marker for aggressive breast carcinomas. Preliminary report. Cancer 1988, 62(3):531-533.
- [6]Janicke F, Schmitt M, Ulm K, Gossner W, Graeff H: Urokinase-type plasminogen activator antigen and early relapse in breast cancer. Lancet 1989, 2(8670):1049.
- [7]Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al.: American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007, 25(33):5287-5312.
- [8]Liang SL, Chan DW: Enzymes and related proteins as cancer biomarkers: a proteomic approach. Clin Chim Acta 2007, 381(1):93-97.
- [9]Dennis JW, Granovsky M, Warren CE: Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1999, 1473(1):21-34.
- [10]Fuster MM, Esko JD: The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005, 5(7):526-542.
- [11]Dube DH, Bertozzi CR: Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 2005, 4(6):477-488.
- [12]Drake PM, Cho W, Li B, Prakobphol A, Johansen E, Anderson NL, et al.: Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin Chem 2010, 56(2):223-236.
- [13]Fukuda M: Possible roles of tumor-associated carbohydrate antigens. Cancer Res 1996, 56(10):2237-2244.
- [14]Li D, Mallory T, Satomura S: AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta 2001, 313(1-2):15-19.
- [15]Hutchinson WL, Du MQ, Johnson PJ, Williams R: Fucosyltransferases: differential plasma and tissue alterations in hepatocellular carcinoma and cirrhosis. Hepatology 1991, 13(4):683-688.
- [16]Noda K, Miyoshi E, Gu J, Gao CX, Nakahara S, Kitada T, et al.: Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res 2003, 63(19):6282-6289.
- [17]Moriwaki K, Noda K, Nakagawa T, Asahi M, Yoshihara H, Taniguchi N, et al.: A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation. Glycobiology 2007, 17(12):1311-1320.
- [18]Ohno M, Nishikawa A, Koketsu M, Taga H, Endo Y, Hada T, et al.: Enzymatic basis of sugar structures of alpha-fetoprotein in hepatoma and hepatoblastoma cell lines: correlation with activities of alpha 1-6 fucosyltransferase and N-acetylglucosaminyltransferases III and V. Int J Cancer 1992, 51(2):315-317.
- [19]Zhang Z, Chan DW: The road from discovery to clinical diagnostics: lessons learned from the first FDA-cleared in vitro diagnostic multivariate index assay of proteomic biomarkers. Cancer Epidemiol Biomarkers Prev 2010, 19(12):2995-2999.
- [20]Sellers TA, Huang Y, Cunningham J, Goode EL, Sutphen R, Vierkant RA, et al.: Association of single nucleotide polymorphisms in glycosylation genes with risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 2008, 17(2):397-404.
- [21]Berois N, Mazal D, Ubillos L, Trajtenberg F, Nicolas A, Sastre-Garau X, et al.: UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-6 as a new immunohistochemical breast cancer marker. J Histochem Cytochem 2006, 54(3):317-328.
- [22]Patani N, Jiang W, Mokbel K: Prognostic utility of glycosyltransferase expression in breast cancer. Cancer Genomics Proteomics 2008, 5(6):333-340.
- [23]Gomes J, Marcos NT, Berois N, Osinaga E, Magalhaes A, Pinto-de-Sousa J, et al.: Expression of UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-6 in gastric mucosa, intestinal metaplasia, and gastric carcinoma. J Histochem Cytochem 2009, 57(1):79-86.
- [24]Park JH, Nishidate T, Kijima K, Ohashi T, Takegawa K, Fujikane T, et al.: Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis. Cancer Res 2010, 70(7):2759-2769.
- [25]Wu C, Guo X, Wang W, Wang Y, Shan Y, Zhang B, et al.: N-Acetylgalactosaminyltransferase-14 as a potential biomarker for breast cancer by immunohistochemistry. BMC Cancer 2010, 10:123. BioMed Central Full Text
- [26]Handerson T, Camp R, Harigopal M, Rimm D, Pawelek J: Beta1,6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clin Cancer Res 2005, 11(8):2969-2973.
- [27]Guo HB, Lee I, Kamar M, Pierce M: N-acetylglucosaminyltransferase V expression levels regulate cadherin-associated homotypic cell-cell adhesion and intracellular signaling pathways. J Biol Chem 2003, 278(52):52412-52424.
- [28]Pinho SS, Reis CA, Paredes J, Magalhaes AM, Ferreira AC, Figueiredo J, et al.: The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum Mol Genet 2009, 18(14):2599-2608.
- [29]Takahashi M, Kuroki Y, Ohtsubo K, Taniguchi N: Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr Res 2009, 344(12):1387-1390.
- [30]Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW: Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 2000, 6(3):306-312.
- [31]Ogawa JI, Inoue H, Koide S: alpha-2,3-Sialyltransferase type 3N and alpha-1,3-fucosyltransferase type VII are related to sialyl Lewis(x) synthesis and patient survival from lung carcinoma. Cancer 1997, 79(9):1678-1685.
- [32]Recchi MA, Hebbar M, Hornez L, Harduin-Lepers A, Peyrat JP, Delannoy P: Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res 1998, 58(18):4066-4070.
- [33]Burchell J, Poulsom R, Hanby A, Whitehouse C, Cooper L, Clausen H, et al.: An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 1999, 9(12):1307-1311.
- [34]Petretti T, Kemmner W, Schulze B, Schlag PM: Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases. Gut 2000, 46(3):359-366.
- [35]Picco G, Julien S, Brockhausen I, Beatson R, Antonopoulos A, Haslam S, et al.: Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology 2010, 20(10):1241-1250.
- [36]Perez-Garay M, Arteta B, Pages L, de Llorens R, de Bolos C, Vidal-Vanaclocha F, et al.: alpha2,3-sialyltransferase ST3Gal III modulates pancreatic cancer cell motility and adhesion in vitro and enhances its metastatic potential in vivo. PLoS One 2010., 5(9)
- [37]Julien S, Adriaenssens E, Ottenberg K, Furlan A, Courtand G, Vercoutter-Edouart AS, et al.: ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology 2006, 16(1):54-64.
- [38]Gretschel S, Haensch W, Schlag PM, Kemmner W: Clinical relevance of sialyltransferases ST6GAL-I and ST3GAL-III in gastric cancer. Oncology 2003, 65(2):139-145.
- [39]Saito S, Yamashita S, Endoh M, Yamato T, Hoshi S, Ohyama C, et al.: Clinical significance of ST3Gal IV expression in human renal cell carcinoma. Oncol Rep 2002, 9(6):1251-1255.
- [40]Schneider F, Kemmner W, Haensch W, Franke G, Gretschel S, Karsten U, et al.: Overexpression of sialyltransferase CMP-sialic acid:Galbeta1,3GalNAc-R alpha6-Sialyltransferase is related to poor patient survival in human colorectal carcinomas. Cancer Res 2001, 61(11):4605-4611.
- [41]Ishizuka H, Nakayama T, Matsuoka S, Gotoh I, Ogawa M, Suzuki K, et al.: Prediction of the development of hepato-cellular-carcinoma in patients with liver cirrhosis by the serial determinations of serum alpha-L-fucosidase activity. Intern Med 1999, 38(12):927-931.
- [42]Matsumoto K, Shimizu C, Arao T, Andoh M, Katsumata N, Kohno T, et al.: Identification of predictive biomarkers for response to trastuzumab using plasma FUCA activity and N-glycan identified by MALDI-TOF-MS. J Proteome Res 2009, 8(2):457-462.
- [43]Sokoll LJ, Sanda MG, Feng Z, Kagan J, Mizrahi IA, Broyles DL, et al.: A prospective, multicenter, National Cancer Institute Early Detection Research Network study of [-2]proPSA: improving prostate cancer detection and correlating with cancer aggressiveness. Cancer Epidemiol Biomarkers Prev 2010, 19(5):1193-1200.
- [44]Peracaula R, Tabares G, Royle L, Harvey DJ, Dwek RA, Rudd PM, et al.: Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology 2003, 13(6):457-470.
- [45]Ohyama C, Hosono M, Nitta K, Oh-eda M, Yoshikawa K, Habuchi T, et al.: Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology 2004, 14(8):671-679.
- [46]Fukushima K, Satoh T, Baba S, Yamashita K: alpha1,2-Fucosylated and beta-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer. Glycobiology 2010, 20(4):452-460.
- [47]Meany DL, Zhang Z, Sokoll LJ, Zhang H, Chan DW: Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. J Proteome Res 2009, 8(2):613-619.
- [48]Draisma G, Boer R, Otto SJ, van der, Cruijsen IW, Damhuis RA, Schroder FH, et al.: Lead times and overdetection due to prostate-specific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst 2003, 95(12):868-878.
- [49]Chan DW, Beveridge RA, Muss H, Fritsche HA, Hortobagyi G, Theriault R, et al.: Use of Truquant BR radioimmunoassay for early detection of breast cancer recurrence in patients with stage II and stage III disease. J Clin Oncol 1997, 15(6):2322-2328.
- [50]Bast RC Jr, Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC: Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest 1981, 68(5):1331-1337.
- [51]Zhu CS, Pinsky PF, Cramer DW, Ransohoff DF, Hartge P, Pfeiffer RM, et al.: A Framework for Evaluating Biomarkers for Early Detection: Validation of Biomarker Panels for Ovarian Cancer. Cancer Prev Res (Phila) 2011, 4(3):375-383.
- [52]Cramer DW, Bast RC Jr, Berg CD, Diamandis EP, Godwin AK, Hartge P, et al.: Ovarian cancer biomarker performance in prostate, lung, colorectal, and ovarian cancer screening trial specimens. Cancer Prev Res (Phila) 2011, 4(3):365-374.
- [53]Jacobs I, Menon U: The sine qua non of discovering novel biomarkers for early detection of ovarian cancer: carefully selected preclinical samples. Cancer Prev Res (Phila) 2011, 4(3):299-302.
- [54]Storr SJ, Royle L, Chapman CJ, Hamid UM, Robertson JF, Murray A, et al.: The O-linked glycosylation of secretory/shed MUC1 from an advanced breast cancer patient's serum. Glycobiology 2008, 18(6):456-462.
- [55]Jankovic MM, Milutinovic BS: Glycoforms of CA125 antigen as a possible cancer marker. Cancer Biomark 2008, 4(1):35-42.
- [56]Hakomori S: Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res 1985, 45(6):2405-2414.
- [57]Rye PD, Bovin NV, Vlasova EV, Molodyk AA, Baryshnikov A, Kreutz FT, et al.: Summary report on the ISOBM TD-6 workshop: analysis of 20 monoclonal antibodies against Sialyl Lewisa and related antigens. Montreux, Switzerland, September 19-24, 1997. Tumour Biol 1998, 19(5):390-420.
- [58]Vestergaard EM, Hein HO, Meyer H, Grunnet N, Jorgensen J, Wolf H, et al.: Reference values and biological variation for tumor marker CA 19-9 in serum for different Lewis and secretor genotypes and evaluation of secretor and Lewis genotyping in a Caucasian population. Clin Chem 1999, 45(1):54-61.
- [59]Yue T, Goldstein IJ, Hollingsworth MA, Kaul K, Brand RE, Haab BB: The Prevalence and Nature of Glycan Alterations on Specific Proteins in Pancreatic Cancer Patients Revealed Using Antibody-Lectin Sandwich Arrays. Mol Cell Proteomics 2009, 8(7):1697-1707.
- [60]Kyselova Z, Mechref Y, Al Bataineh MM, Dobrolecki LE, Hickey RJ, Vinson J, et al.: Alterations in the Serum Glycome Due to Metastatic Prostate Cancer. Journal of Proteome Research 2007, 6(5):1822-1832.
- [61]Kyselova Z, Mechref Y, Kang P, Goetz JA, Dobrolecki LE, Sledge GW, et al.: Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin Chem 2008, 54(7):1166-1175.
- [62]Callewaert N, Van Vlierberghe H, Van Hecke A, Laroy W, Delanghe J, Contreras R: Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics. Nat Med 2004, 10(4):429-434.
- [63]Vanderschaeghe D, Laroy W, Sablon E, Halfon P, Van Hecke A, Delanghe J, et al.: GlycoFibroTest is a highly performant liver fibrosis biomarker derived from DNA sequencer-based serum protein glycomics. Mol Cell Proteomics 2009, 8(5):986-994.
- [64]Liu XE, Desmyter L, Gao CF, Laroy W, Dewaele S, Vanhooren V, et al.: N-glycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus. Hepatology 2007, 46(5):1426-1435.
- [65]Goetz JA, Mechref Y, Kang P, Jeng MH, Novotny MV: Glycomic profiling of invasive and non-invasive breast cancer cells. Glycoconj J 2009, 26(2):117-131.
- [66]Lattova E, Tomanek B, Bartusik D, Perreault H: N-glycomic changes in human breast carcinoma MCF-7 and T-lymphoblastoid cells after treatment with herceptin and herceptin/Lipoplex. J Proteome Res 2010, 9(3):1533-1540.
- [67]Misonou Y, Shida K, Korekane H, Seki Y, Noura S, Ohue M, et al.: Comprehensive clinico-glycomic study of 16 colorectal cancer specimens: elucidation of aberrant glycosylation and its mechanistic causes in colorectal cancer cells. J Proteome Res 2009, 8(6):2990-3005.
- [68]Abbott KL, Nairn AV, Hall EM, Horton MB, McDonald JF, Moremen KW, et al.: Focused glycomic analysis of the N-linked glycan biosynthetic pathway in ovarian cancer. Proteomics 2008, 8(16):3210-3220.
- [69]Abbott KL, Lim JM, Wells L, Benigno BB, McDonald JF, Pierce M: Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis. Proteomics 2010, 10(3):470-481.
- [70]Abbott KL, Aoki K, Lim JM, Porterfield M, Johnson R, O'Regan RM, et al.: Targeted glycoproteomic identification of biomarkers for human breast carcinoma. J Proteome Res 2008, 7(4):1470-1480.
- [71]Block TM, Comunale MA, Lowman M, Steel LF, Romano PR, Fimmel C, et al.: Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci USA 2005, 102(3):779-784.
- [72]Marrero JA, Romano PR, Nikolaeva O, Steel L, Mehta A, Fimmel CJ, et al.: GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol 2005, 43(6):1007-1012.
- [73]Comunale MA, Lowman M, Long RE, Krakover J, Philip R, Seeholzer S, et al.: Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J Proteome Res 2006, 5(2):308-315.
- [74]Comunale MA, Wang M, Hafner J, Krakover J, Rodemich L, Kopenhaver B, et al.: Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. J Proteome Res 2009, 8(2):595-602.
- [75]Wang M, Long RE, Comunale MA, Junaidi O, Marrero J, Di Bisceglie AM, et al.: Novel fucosylated biomarkers for the early detection of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev 2009, 18(6):1914-1921.
- [76]Mao Y, Yang H, Xu H, Lu X, Sang X, Du S, et al.: Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut 2010, 59(12):1687-1693.
- [77]Yamamoto K, Imamura H, Matsuyama Y, Kume Y, Ikeda H, Norman GL, et al.: AFP, AFP-L3, DCP, and GP73 as markers for monitoring treatment response and recurrence and as surrogate markers of clinicopathological variables of HCC. J Gastroenterol 2010, 45(12):1272-82.
- [78]Ozkan H, Erdal H, Tutkak H, Karaeren Z, Yakut M, Yuksel O, et al.: Diagnostic and prognostic validity of golgi protein 73 in hepatocellular carcinoma. Digestion 2011, 83(1-2):83-88.
- [79]Abd Hamid UM, Royle L, Saldova R, Radcliffe CM, Harvey DJ, Storr SJ, et al.: A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 2008, 18(12):1105-1118.
- [80]Ang IL, Poon TC, Lai PB, Chan AT, Ngai SM, Hui AY, et al.: Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma: a glycoproteomic approach. J Proteome Res 2006, 5(10):2691-2700.
- [81]Fujimura T, Shinohara Y, Tissot B, Pang PC, Kurogochi M, Saito S, et al.: Glycosylation status of haptoglobin in sera of patients with prostate cancer vs benign prostate disease or normal subjects. Int J Cancer 2008, 122(1):39-49.
- [82]Saldova R, Wormald MR, Dwek RA, Rudd PM: Glycosylation changes on serum glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis Markers 2008, 25(4-5):219-232.
- [83]Park SY, Yoon SJ, Jeong YT, Kim JM, Kim JY, Bernert B, et al.: N-glycosylation status of beta-haptoglobin in sera of patients with colon cancer, chronic inflammatory diseases and normal subjects. Int J Cancer 2010, 126(1):142-155.
- [84]Zhang Z, Chan DW: The Road from Discovery to Clinical Diagnostics: Lessons Learned From the First FDA cleared In Vitro Diagnostic Multivariate Index Assay of Proteomic Biomarkers. Cancer Epidemiol Biomarkers Prev 2010, 19(12):2995-9.
- [85]Livingston PO, Ritter G, Calves MJ: Antibody response after immunization with the gangliosides GM1, GM2, GM3, GD2 and GD3 in the mouse. Cancer Immunol Immunother 1989, 29(3):179-184.
- [86]Ragupathi G, Livingston PO, Hood C, Gathuru J, Krown SE, Chapman PB, et al.: Consistent antibody response against ganglioside GD2 induced in patients with melanoma by a GD2 lactone-keyhole limpet hemocyanin conjugate vaccine plus immunological adjuvant QS-21. Clin Cancer Res 2003, 9(14):5214-5220.
- [87]Diaz A, Alfonso M, Alonso R, Saurez G, Troche M, Catala M, et al.: Immune responses in breast cancer patients immunized with an anti-idiotype antibody mimicking NeuGc-containing gangliosides. Clin Immunol 2003, 107(2):80-89.
- [88]Portoukalian J: Immunogenicity of glycolipids. Clin Rev Allergy Immunol 2000, 19(1):73-78.
- [89]Wandall HH, Blixt O, Tarp MA, Pedersen JW, Bennett EP, Mandel U, et al.: Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res 2010, 70(4):1306-1313.
- [90]Wang CC, Huang YL, Ren CT, Lin CW, Hung JT, Yu JC, et al.: Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proc Natl Acad Sci USA 2008, 105(33):11661-11666.
- [91]Dai Z, Zhou J, Qiu SJ, Liu YK, Fan J: Lectin-based glycoproteomics to explore and analyze hepatocellular carcinoma-related glycoprotein markers. Electrophoresis 2009, 30(17):2957-2966.
- [92]Vercoutter-Edouart AS, Slomianny MC, Dekeyzer-Beseme O, Haeuw JF, Michalski JC: Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells. Proteomics 2008, 8(16):3236-3256.
- [93]Di Michele M, Marcone S, Cicchillitti L, Della Corte A, Ferlini C, Scambia G, et al.: Glycoproteomics of paclitaxel resistance in human epithelial ovarian cancer cell lines: towards the identification of putative biomarkers. J Proteomics 2010, 73(5):879-898.
- [94]Kim YS, Hwang SY, Kang HY, Sohn H, Oh S, Kim JY, et al.: Functional proteomics study reveals that N-Acetylglucosaminyltransferase V reinforces the invasive/metastatic potential of colon cancer through aberrant glycosylation on tissue inhibitor of metalloproteinase-1. Mol Cell Proteomics 2008, 7(1):1-14.
- [95]Ahn YH, Kim YS, Ji ES, Lee JY, Jung JA, Ko JH, et al.: Comparative quantitation of aberrant glycoforms by lectin-based glycoprotein enrichment coupled with multiple-reaction monitoring mass spectrometry. Anal Chem 2010, 82(11):4441-4447.
- [96]Ahn HJ, Kim YS, Lee CH, Cho EW, Yoo HS, Kim SH, et al.: Generation of antibodies recognizing an aberrant glycoform of human tissue inhibitor of metalloproteinase-1 (TIMP-1) using decoy immunization and phage display. J Biotechnol 2010, 151(2):225-30.
- [97]Noda K, Miyoshi E, Uozumi N, Gao CX, Suzuki K, Hayashi N, et al.: High expression of alpha-1-6 fucosyltransferase during rat hepatocarcinogenesis. Int J Cancer 1998, 75(3):444-450.
PDF