期刊论文详细信息
Journal of Neuroinflammation
Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice
Tony L Yaksh2  Maripat Corr1  Kelly Eddinger2  Jonathan Cheung2  Jennifer A Stokes2 
[1] Division of Rheumatology, Allergy and Immunology, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA 92093-0663, USA;Department of Anesthesiology, University of California, 9500 Gilman Dr. MC 0818, La Jolla, San Diego, CA 92093-0818, USA
关键词: TRIF;    Toll-like receptors;    Spinal nerve ligation;    MyD88;    Interferon-beta;    Hyperalgesia;    Allodynia;   
Others  :  834602
DOI  :  10.1186/1742-2094-10-148
 received in 2013-03-20, accepted in 2013-11-18,  发布年份 2013
PDF
【 摘 要 】

Background

Spinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.

Methods

L5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.

Results

In WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.

Conclusions

These observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice.

【 授权许可】

   
2013 Stokes et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715081750869.pdf 2391KB PDF download
Figure 9. 60KB Image download
Figure 8. 63KB Image download
Figure 7. 57KB Image download
Figure 6. 101KB Image download
Figure 5. 86KB Image download
Figure 4. 65KB Image download
Figure 3. 113KB Image download
Figure 2. 68KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Marchand F, Perretti M, McMahon SB: Role of the immune system in chronic pain. Nat Rev Neurosci 2005, 6:521-532.
  • [2]Jaggi AS, Jain V, Singh N: Animal models of neuropathic pain. Fund Clin Pharmacol 2011, 25:1-28.
  • [3]Chung JM, Kim HK, Chung K: Segmental spinal nerve ligation model of neuropathic pain. Metho Mol Med 2004, 99:35-45.
  • [4]Saade NE, Jabbur SJ: Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Progr Neurobiol 2008, 86:22-47.
  • [5]King T, Vera-Portocarrero L, Gutierrez T, Vanderah TW, Dussor G, Lai J, Fields HL, Porreca F: Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci 2009, 12:1364-1366.
  • [6]Wen YR, Suter MR, Kawasaki Y, Huang J, Pertin M, Kohno T, Berde CB, Decosterd I, Ji RR: Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model. Anesthesiology 2007, 107:312-321.
  • [7]Calvo M, Bennett DL: The mechanisms of microgliosis and pain following peripheral nerve injury. Exp Neurol 2012, 234:271-282.
  • [8]Hashizume H, DeLeo JA, Colburn RW, Weinstein JN: Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine 2000, 25:1206-1217.
  • [9]Cao H, Zhang YQ: Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev 2008, 32:972-983.
  • [10]Guo LH, Schluesener HJ: The innate immunity of the central nervous system in chronic pain: the role of toll-like receptors. Cell Mol Life Sci 2007, 64:1128-1136.
  • [11]Hu P, Bembrick AL, Keay KA, McLachlan EM: Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun 2007, 21:599-616.
  • [12]Hu P, McLachlan EM: Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience 2002, 112:23-38.
  • [13]Kim CF, Moalem-Taylor G: Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Res 2011, 1405:95-108.
  • [14]Wang R, Guo W, Ossipov MH, Vanderah TW, Porreca F, Lai J: Glial cell line-derived neurotrophic factor normalizes neurochemical changes in injured dorsal root ganglion neurons and prevents the expression of experimental neuropathic pain. Neuroscience 2003, 121:815-824.
  • [15]Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K: Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci 2000, 15:170-182.
  • [16]Znaor L, Lovric S, Hogan Q, Sapunar D: Association of neural inflammation with hyperalgesia following spinal nerve ligation. Croatian Med J 2007, 48:35-42.
  • [17]Panagio LA, Tristao FS, Moreira AP, Pereira MS, Cavassani KA, Milanezi CM, Rossi MA, Silva JS: Role of interleukin (IL)-18 in experimental paracoccidioidomycosis. Med Mycol 2008, 46:435-442.
  • [18]Hua XY, Svensson CI, Matsui T, Fitzsimmons B, Yaksh TL, Webb M: Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur J Neurosci 2005, 22:2431-2440.
  • [19]Mika J, Osikowicz M, Makuch W, Przewlocka B: Minocycline and pentoxifylline attenuate allodynia and hyperalgesia and potentiate the effects of morphine in rat and mouse models of neuropathic pain. Eur J Pharmacol 2007, 560:142-149.
  • [20]Raghavendra V, Tanga F, Rutkowski MD, DeLeo JA: Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain 2003, 104:655-664.
  • [21]Saito O, Svensson CI, Buczynski MW, Wegner K, Hua XY, Codeluppi S, Schaloske RH, Deems RA, Dennis EA, Yaksh TL: Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF. Br J Pharmacol 2010, 160:1754-1764.
  • [22]Pu S, Xu Y, Du D, Yang M, Zhang X, Wu J, Jiang W: Minocycline attenuates mechanical allodynia and expression of spinal NMDA receptor 1 subunit in rat neuropathic pain model. J Physiol Biochem 2013, 69(3):349-357.
  • [23]Akira S: Toll-like receptor signaling. J Biol Chem 2003, 278:38105-38108.
  • [24]Akira S, Sato S: Toll-like receptors and their signaling mechanisms. Scand J Infect Dis 2003, 35(9):555-562.
  • [25]Bsibsi M, Ravid R, Gveric D, van Noort JM: Broad expression of toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002, 61:1013-1021.
  • [26]Bowman CC, Rasley A, Tranguch SL, Marriott I: Cultured astrocytes express toll-like receptors for bacterial products. Glia 2003, 43:281-291.
  • [27]Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP: TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005, 175:4320-4330.
  • [28]Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, Watkins LR: Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005, 115:71-83.
  • [29]Raghavendra V, Tanga F, DeLeo JA: Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Therapeut 2003, 306:624-630.
  • [30]Lehnardt S: Innate immunity and neuroinflammation in the CNS: the role of microglia in toll-like receptor-mediated neuronal injury. Glia 2010, 58:253-263.
  • [31]Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, Choi SY, Park K, Kim JS, Akira S, Na HS, Oh SB, Lee SJ: A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 2007, 282:14975-14983.
  • [32]Kim D, Lee S, Lee SJ: Toll-like receptors in peripheral nerve injury and neuropathic pain. Curr Top Microbiol Immunol 2009, 336:169-186.
  • [33]Hutchinson MR, Ramos KM, Loram LC, Wieseler J, Sholar PW, Kearney JJ, Lewis MT, Crysdale NY, Zhang Y, Harrison JA, Maier SF, Rice KC, Watkins LR: Evidence for a role of heat shock protein-90 in toll like receptor 4 mediated pain enhancement in rats. Neuroscience 2009, 164:1821-1832.
  • [34]Cao L, Tanga FY, Deleo JA: The contributing role of CD14 in toll-like receptor 4 dependent neuropathic pain. Neuroscience 2009, 158:896-903.
  • [35]Nicotra L, Loram LC, Watkins LR, Hutchinson MR: Toll-like receptors in chronic pain. Exp Neurol 2012, 234:316-329.
  • [36]Stokes JA, Corr M, Yaksh TL: Transient tactile allodynia following intrathecal puncture in mouse: contributions of toll-like receptor signaling. Neurosci Lett 2011, 504:215-218.
  • [37]Christianson CA, Dumlao DS, Stokes JA, Dennis EA, Svensson CI, Corr M, Yaksh TL: Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain 2011, 152:2881-2891.
  • [38]DeLeo JA, Yezierski RP: The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 2001, 90:1-6.
  • [39]Xu Q, Yaksh TL: A brief comparison of the pathophysiology of inflammatory versus neuropathic pain. Curr Opin Anaesthesiol 2011, 24:400-407.
  • [40]Tanga FY, Nutile-McMenemy N, DeLeo JA: The CNS role of toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci USA 2005, 102:5856-5861.
  • [41]Sorge RE, LaCroix-Fralish ML, Tuttle AH, Sotocinal SG, Austin JS, Ritchie J, Chanda ML, Graham AC, Topham L, Beggs S, Salter MW, Mogil JS: Spinal cord toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice. J Neurosci 2011, 31:15450-15454.
  • [42]Bettoni I, Comelli F, Rossini C, Granucci F, Giagnoni G, Peri F, Costa B: Glial TLR4 receptor as new target to treat neuropathic pain: efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice. Glia 2008, 56:1312-1319.
  • [43]Kawai T, Akira S: TLR signaling. Cell Death Differ 2006, 13:816-825.
  • [44]Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S: Cutting edge: a novel toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the toll-like receptor signaling. J Immunol 2002, 169:6668-6672.
  • [45]Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz E, Wagner H, Hacker G, Mann M, Karin M: Specificity in toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 2006, 439:204-207.
  • [46]O’Neill LA, Bowie AG: The family of five: TIR-domain-containing adaptors in toll-like receptor signalling. Nat Rev Immunol 2007, 7:353-364.
  • [47]Stokes JA, Corr M, Yaksh TL: Spinal toll-like receptor signaling and nociceptive processing: regulatory balance between TIRAP and TRIF cascades mediated by TNF and IFNbeta. Pain 2013, 154(5):733-742.
  • [48]Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998, 9:143-150.
  • [49]Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S: Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999, 162:3749-3752.
  • [50]Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S: Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999, 11:443-451.
  • [51]Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beutler B: Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 2003, 424:743-748.
  • [52]Sakaguchi S, Negishi H, Asagiri M, Nakajima C, Mizutani T, Takaoka A, Honda K, Taniguchi T: Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock. Biochem Biophys Res Comm 2003, 306:860-866.
  • [53]Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, Taniguchi T: IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005, 434:772-777.
  • [54]Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Meth 1994, 53:55-63.
  • [55]Hylden JL, Wilcox GL: Intrathecal morphine in mice: a new technique. Eur J Pharmacol 1980, 67:313-316.
  • [56]Hutchinson MR, Zhang Y, Brown K, Coats BD, Shridhar M, Sholar PW, Patel SJ, Crysdale NY, Harrison JA, Maier SF, Rice KC, Watkins LR: Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci 2008, 28:20-29.
  • [57]Nadeau S, Filali M, Zhang J, Kerr BJ, Rivest S, Soulet D, Iwakura Y, de Rivero Vaccari JP, Keane RW, Lacroix S: Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1beta and TNF: implications for neuropathic pain. J Neurosci 2011, 31:12533-12542.
  • [58]Oaklander AL, Brown JM: Unilateral nerve injury produces bilateral loss of distal innervation. Ann Neurol 2004, 55:639-644.
  • [59]Kozin F, Genant HK, Bekerman C, McCarty DJ: The reflex sympathetic dystrophy syndrome. II. Roentgenographic and scintigraphic evidence of bilaterality and of periarticular accentuation. Am J Med 1976, 60:332-338.
  • [60]Huge V, Lauchart M, Forderreuther S, Kaufhold W, Valet M, Azad SC, Beyer A, Magerl W: Interaction of hyperalgesia and sensory loss in complex regional pain syndrome type I (CRPS I). PloS one 2008, 3:e2742.
  • [61]Konopka KH, Harbers M, Houghton A, Kortekaas R, van Vliet A, Timmerman W, den Boer JA, Struys MM, van Wijhe M: Bilateral sensory abnormalities in patients with unilateral neuropathic pain; a quantitative sensory testing (QST) study. PloS one 2012, 7:e37524.
  • [62]Fernandez-de-las-Penas C, de la Llave-Rincon AI, Fernandez-Carnero J, Cuadrado ML, Arendt-Nielsen L, Pareja JA: Bilateral widespread mechanical pain sensitivity in carpal tunnel syndrome: evidence of central processing in unilateral neuropathy. Brain 2009, 132:1472-1479.
  • [63]de la Llave-Rincon AI, Fernandez-de-las-Penas C, Fernandez-Carnero J, Padua L, Arendt-Nielsen L, Pareja JA: Bilateral hand/wrist heat and cold hyperalgesia, but not hypoesthesia, in unilateral carpal tunnel syndrome. Exp Brain Res Exp Hirnforsch Exp Cerebrale 2009, 198:455-463.
  • [64]Fernandez-de-las-Penas C, Galán-del-Río F, Ortega-Santiago R, Jiménez-García R, Arendt-Nielsen L, Svensson P: Bilateral thermal hyperalgesia in trigeminal and extra-trigeminal regions in patients with myofascial temporomandibular disorders. Exp Brain Res 2010, 202(1):171-179.
  • [65]Mitchell SW: Injuries of nerves and their consequences. Philadelphia: J.B Lippincott; 1872.
  • [66]Koltzenburg M, Wall PD, McMahon SB: Does the right side know what the left is doing? Trends Neurosci 1999, 22:122-127.
  • [67]Chacur M, Milligan ED, Gazda LS, Armstrong C, Wang H, Tracey KJ, Maier SF, Watkins LR: A new model of sciatic inflammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats. Pain 2001, 94:231-244.
  • [68]Chen RG, Kong WW, Ge DL, Luo C, Hu SJ: Bilateral mechanical and thermal hyperalgesia and tactile allodynia after chronic compression of dorsal root ganglion in mice. Neurosci Bull 2011, 27:233-240.
  • [69]Ohmichi Y, Sato J, Ohmichi M, Sakurai H, Yoshimoto T, Morimoto A, Hashimoto T, Eguchi K, Nishihara M, Arai YC, Ohishi H, Asamoto K, Ushida T, Nakano T, Kumazawa T: Two-week cast immobilization induced chronic widespread hyperalgesia in rats. Eur J Pain 2012, 16:338-348.
  • [70]Hossaini M, Sarac C, Jongen JL, Holstege JC: Spinal glycinergic and GABAergic neurons expressing C-fos after capsaicin stimulation are increased in rats with contralateral neuropathic pain. Neuroscience 2011, 196:265-275.
  • [71]Vanderah TW, Suenaga NM, Ossipov MH, Malan TP Jr, Lai J, Porreca F: Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J Neurosci: Offic J Soc Neurosci 2001, 21:279-286.
  • [72]Svensson CI, Tran TK, Fitzsimmons B, Yaksh TL, Hua XY: Descending serotonergic facilitation of spinal ERK activation and pain behavior. FEBS Lett 2006, 580:6629-6634.
  • [73]Zanon RG, Cartarozzi LP, Victorio SC, Moraes JC, Morari J, Velloso LA, Oliveira AL: Interferon (IFN) beta treatment induces major histocompatibility complex (MHC) class I expression in the spinal cord and enhances axonal growth and motor function recovery following sciatic nerve crush in mice. Neuropathol Appl Neurobiol 2010, 36:515-534.
  • [74]Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP: Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 2009, 158:1007-1020.
  • [75]Rivest S: Regulation of innate immune responses in the brain. Nat Rev Immunol 2009, 9:429-439.
  • [76]Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, Savitsky D, Ronfani L, Akira S, Bianchi ME, Honda K, Tamura T, Kodama T, Taniguchi T: HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 2009, 462:99-103.
  • [77]Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ: Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010, 464:104-107.
  • [78]Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ: CD36 ligands promote sterile inflammation through assembly of a toll-like receptor 4 and 6 heterodimer. Nat Immunol 2010, 11:155-161.
  • [79]Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, Sekiya T, Ooboshi H, Kitazono T, Yanagawa T, Ishii T, Takahashi H, Mori S, Nishibori M, Kuroda K, Akira S, Miyake K, Yoshimura A: Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 2012, 18:911-917.
  • [80]Zhang J, Takahashi HK, Liu K, Wake H, Liu R, Maruo T, Date I, Yoshino T, Ohtsuka A, Mori S, Nishibori M: Anti-high mobility group box-1 monoclonal antibody protects the blood–brain barrier from ischemia-induced disruption in rats. Stroke 2011, 42:1420-1428.
  • [81]Cavassani KA, Ishii M, Wen H, Schaller MA, Lincoln PM, Lukacs NW, Hogaboam CM, Kunkel SL: TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med 2008, 205:2609-2621.
  • [82]Erridge C: Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 2010, 87:989-999.
  • [83]Kariko K, Ni H, Capodici J, Lamphier M, Weissman D: mRNA is an endogenous ligand for toll-like receptor 3. J Biol Chem 2004, 279:12542-12550.
  • [84]Hosmane S, Tegenge MA, Rajbhandari L, Uapinyoying P, Kumar NG, Thakor N, Venkatesan A: Toll/interleukin-1 receptor domain-containing adapter inducing interferon-beta mediates microglial phagocytosis of degenerating axons. J Neurosci 2012, 32:7745-7757.
  • [85]Tanaka T, Ueno M, Yamashita T: Engulfment of axon debris by microglia requires p38 MAPK activity. J Biol Chem 2009, 284:21626-21636.
  • [86]Liu T, Gao YJ, Ji RR: Emerging role of toll-like receptors in the control of pain and itch. Neurosci Bull 2012, 28:131-144.
  文献评价指标  
  下载次数:87次 浏览次数:44次