期刊论文详细信息
Genome Biology
Cytosine methylation and hydroxymethylation mark DNA for elimination in Oxytricha trifallax
Laura F Landweber1  David H Perlman2  John R Bracht1 
[1] Ecology & Evolutionary Biology Department, Princeton University, Washington Rd., Princeton, NJ, 08544, USA;Collaborative Proteomics and Mass Spectrometry Center, Molecular Biology Department and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Rd., Princeton, NJ, 08544, USA
关键词: decitabine;    azacitidine;    5-azacytidine;    5-Aza-2'-deoxycitidine;    methyltransferase;    heterochromatin;    DNA degradation;    epigenetics;   
Others  :  869398
DOI  :  10.1186/gb-2012-13-10-r99
 received in 2012-06-01, accepted in 2012-10-17,  发布年份 2012
PDF
【 摘 要 】

Background

Cytosine methylation of DNA is conserved across eukaryotes and plays important functional roles regulating gene expression during differentiation and development in animals, plants and fungi. Hydroxymethylation was recently identified as another epigenetic modification marking genes important for pluripotency in embryonic stem cells.

Results

Here we describe de novo cytosine methylation and hydroxymethylation in the ciliate Oxytricha trifallax. These DNA modifications occur only during nuclear development and programmed genome rearrangement. We detect methylcytosine and hydroxymethylcytosine directly by high-resolution nano-flow UPLC mass spectrometry, and indirectly by immunofluorescence, methyl-DNA immunoprecipitation and bisulfite sequencing. We describe these modifications in three classes of eliminated DNA: germline-limited transposons and satellite repeats, aberrant DNA rearrangements, and DNA from the parental genome undergoing degradation. Methylation and hydroxymethylation generally occur on the same sequence elements, modifying cytosines in all sequence contexts. We show that the DNA methyltransferase-inhibiting drugs azacitidine and decitabine induce demethylation of both somatic and germline sequence elements during genome rearrangements, with consequent elevated levels of germline-limited repetitive elements in exconjugant cells.

Conclusions

These data strongly support a functional link between cytosine DNA methylation/hydroxymethylation and DNA elimination. We identify a motif strongly enriched in methylated/hydroxymethylated regions, and we propose that this motif recruits DNA modification machinery to specific chromosomes in the parental macronucleus. No recognizable methyltransferase enzyme has yet been described in O. trifallax, raising the possibility that it might employ a novel cytosine methylation machinery to mark DNA sequences for elimination during genome rearrangements.

【 授权许可】

   
2012 Bracht et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140730000545735.pdf 4128KB PDF download
53KB Image download
56KB Image download
81KB Image download
49KB Image download
58KB Image download
33KB Image download
68KB Image download
44KB Image download
【 图 表 】

【 参考文献 】
  • [1]Zemach A, McDaniel IE, Silva P, Zilberman D: Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 2010, 328:916-919.
  • [2]Bird A: DNA methylation patterns and epigenetic memory. Genes Dev 2002, 16:6-21.
  • [3]He G, Elling AA, Deng XW: The epigenome and plant development. Annu Rev Plant Biol 2011, 62:411-435.
  • [4]Law JA, Jacobsen SE: Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 2010, 11:204-220.
  • [5]Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE: Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 2010, 107:8689-8694.
  • [6]Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL: Dynamic changes in the human methylome during differentiation. Genome Res 2010, 20:320-331.
  • [7]Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008, 454:766-770.
  • [8]Li E, Bestor TH, Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992, 69:915-926.
  • [9]Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99:247-257.
  • [10]Stancheva I, Hensey C, Meehan RR: Loss of the maintenance methyltransferase, xDnmt1, induces apoptosis in Xenopus , embryos. EMBO J 2001, 20:1963-1973.
  • [11]Moarefi AH, Chedin F: ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol 2011, 409:758-772.
  • [12]Brun ME, Lana E, Rivals I, Lefranc G, Sarda P, Claustres M, Megarbane A, De Sario A: Heterochromatic genes undergo epigenetic changes and escape silencing in immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome. PLoS One 2011, 6:e19464.
  • [13]Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393:386-389.
  • [14]Takai D, Jones PA: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 2002, 99:3740-3745.
  • [15]Gardiner-Garden M, Frommer M: CpG islands in vertebrate genomes. J Mol Biol 1987, 196:261-282.
  • [16]Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, Cedar H, Bergman Y: G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 2006, 8:188-194.
  • [17]Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J, Deplus R, Fuks F, Shinkai Y, Cedar H, Bergman Y: De novo , DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol 2008, 15:1176-1183.
  • [18]Cedar H, Bergman Y: Epigenetics of haematopoietic cell development. Nat Rev Immunol 2011, 11:478-488.
  • [19]Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002, 3:415-428.
  • [20]Hoffmann MJ, Schulz WA: Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 2005, 83:296-321.
  • [21]Cheung HH, Lee TL, Rennert OM, Chan WY: DNA methylation of cancer genome. Birth Defects Res C Embryo Today 2009, 87:335-350.
  • [22]Paz MF, Fraga MF, Avila S, Guo M, Pollan M, Herman JG, Esteller M: A systematic profile of DNA methylation in human cancer cell lines. Cancer Res 2003, 63:1114-1121.
  • [23]Lengauer C, Kinzler KW, Vogelstein B: DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci USA 1997, 94:2545-2550.
  • [24]Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R: Induction of tumors in mice by genomic hypomethylation. Science 2003, 300:489-492.
  • [25]Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, Kotsinas A, Gorgoulis V, Field JK, Liloglou T: Hypomethylation of retrotransposable elements correlates with genomic instability in nonsmall cell lung cancer. Int J Cancer 2009, 124:81-87.
  • [26]Prescott DM: The DNA of ciliated protozoa. Microbiol Rev 1994, 58:233-267.
  • [27]Lauth MR, Spear BB, Heumann J, Prescott DM: DNA of ciliated protozoa: DNA sequence diminution during macronuclear development of Oxytricha. Cell 1976, 7:67-74.
  • [28]Herrick G, Cartinhour S, Dawson D, Ang D, Sheets R, Lee A, Williams K: Mobile elements bounded by C4A4 telomeric repeats in Oxytricha fallax. Cell 1985, 43:759-768.
  • [29]Hunter DJ, Williams K, Cartinhour S, Herrick G: Precise excision of telomere-bearing transposons during Oxytricha fallax , macronuclear development. Genes Dev 1989, 3:2101-2112.
  • [30]Williams K, Doak TG, Herrick G: Developmental precise excision of Oxytricha trifallax , telomere-bearing elements and formation of circles closed by a copy of the flanking target duplication. EMBO J 1993, 12:4593-4601.
  • [31]Dawson D, Buckley B, Cartinhour S, Myers R, Herrick G: Elimination of germ-line tandemly repeated sequences from the somatic genome of the ciliate Oxytricha fallax. Chromosoma 1984, 90:289-294.
  • [32]Adl SM, Berger JD: Timing of life cycle morphogenesis in synchronous samples of Sterkiella histriomuscorum. II. The sexual pathway. J Eukaryot Microbiol 2000, 47:443-449.
  • [33]Spear BB, Lauth MR: Polytene chromosomes of Oxytricha: biochemical and morphological changes during macronuclear development in a ciliated protozoan. Chromosoma 1976, 54:1-13.
  • [34]Ammermann D: Release of DNA breakdown products into the culture medium of Stylonychia mytilus , exconjugants (Protozoa, Ciliata) during the destruction of the polytene chromosomes. J Cell Biol 1969, 40:576-577.
  • [35]Chung PH, Yao MC: Tetrahymena , JMJD3 homolog regulates H3K27 methylation and nuclear differentiation. Eukaryot Cell 2012, 11:601-614.
  • [36]Liu Y, Taverna SD, Muratore TL, Shabanowitz J, Hunt DF, Allis CD: RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev 2007, 21:1530-1545.
  • [37]Yao MC, Yao CH, Halasz LM, Fuller P, Rexer CH, Wang SH, Jain R, Coyne RS, Chalker DL: Identification of novel chromatin-associated proteins involved in programmed genome rearrangements in Tetrahymena. J Cell Sci 2007, 120:1978-1989.
  • [38]Madireddi MT, Coyne RS, Smothers JF, Mickey KM, Yao MC, Allis CD: Pdd1p, a novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell 1996, 87:75-84.
  • [39]Nikiforov MA, Gorovsky MA, Allis CD: A novel chromodomain protein, pdd3p, associates with internal eliminated sequences during macronuclear development in Tetrahymena thermophila. Mol Cell Biol 2000, 20:4128-4134.
  • [40]Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F: The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006, 439:871-874.
  • [41]Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
  • [42]Munzel M, Globisch D, Carell T: 5-Hydroxymethylcytosine, the sixth base of the genome. Angew Chem Int Ed Engl 2011, 50:6460-6468.
  • [43]OxyDB, the Oxytricha fallax , genome database [http:/ / oxy.ciliate.org/ system/ downloads/ Oxytricha_trifallax_mass_spec_2012. zip] webcite
  • [44]Sorensen AL, Collas P: Immunoprecipitation of methylated DNA. Methods Mol Biol 2009, 567:249-262.
  • [45]Mohn F, Weber M, Schubeler D, Roloff TC: Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 2009, 507:55-64.
  • [46]Jacinto FV, Ballestar E, Esteller M: Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. BioTechniques 2008, 44:35-43.
  • [47]Jacinto FV, Ballestar E, Ropero S, Esteller M: Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells. Cancer Res 2007, 67:11481-11486.
  • [48]Weng YI, Huang TH, Yan PS: Methylated DNA immunoprecipitation and microarray-based analysis: detection of DNA methylation in breast cancer cell lines. Methods Mol Biol 2009, 590:165-176.
  • [49]Magdalena J, Goval JJ: Methyl DNA immunoprecipitation. Methods Mol Biol 2009, 567:237-247.
  • [50]Yang Y, Wang W, Li Y, Tu J, Bai Y, Xiao P, Zhang D, Lu Z: Identification of methylated regions with peak search based on Poisson model from massively parallel methylated DNA immunoprecipitation-sequencing data. Electrophoresis 2010, 31:3537-3544.
  • [51]Sengenes J, Daunay A, Charles MA, Tost J: Quality control and single nucleotide resolution analysis of methylated DNA immunoprecipitation products. Anal Biochem 2010, 407:141-143.
  • [52]Rajendram R, Ferreira JC, Grafodatskaya D, Choufani S, Chiang T, Pu S, Butcher DT, Wodak SJ, Weksberg R: Assessment of methylation level prediction accuracy in methyl-DNA immunoprecipitation and sodium bisulfite based microarray platforms. Epigenetics 2011, 6:410-415.
  • [53]Reynaud C, Bruno C, Boullanger P, Grange J, Barbesti S, Niveleau A: Monitoring of urinary excretion of modified nucleosides in cancer patients using a set of six monoclonal antibodies. Cancer Lett 1992, 61:255-262.
  • [54]Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
  • [55]Ammermann D, Steinbruck G, von Berger L, Hennig W: The development of the macronucleus in the ciliated protozoan Stylonychia mytilus. Chromosoma 1974, 45:401-429.
  • [56]Kloetzel JA: Compartmentalization of the developing macronucleus following conjugation in stylonychia and euplotes. J Cell Biol 1970, 47:395-407.
  • [57]The MEME Suite [http://meme.sdsc.edu] webcite
  • [58]Frommer M, Mcdonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL: A Genomic Sequencing Protocol That Yields a Positive Display of 5-Methylcytosine Residues in Individual DNA Strands. Proc Natl Acad Sci USA 1992, 89:1827-1831.
  • [59]Bibikova M, Fan JB: Genome-wide DNA methylation profiling. Wiley Interdiscip Rev Syst Biol Med 2010, 2:210-223.
  • [60]Huang Y, Pastor WA, Shen YH, Tahiliani M, Liu DR, Rao A: The Behaviour of 5-Hydroxymethylcytosine in Bisulfite Sequencing. PLoS One 2010, 5:e8888.
  • [61]Doak TG, Witherspoon DJ, Doerder FP, Williams K, Herrick G: Conserved features of TBE1 , transposons in ciliated protozoa. Genetica 1997, 101:75-86.
  • [62]Selker EU, Tountas NA, Cross SH, Margolin BS, Murphy JG, Bird AP, Freitag M: The methylated component of the Neurospora crassa , genome. Nature 2003, 422:893-897.
  • [63]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25:402-408.
  • [64]Nowacki M, Vijayan V, Zhou Y, Schotanus K, Doak TG, Landweber LF: RNAmediated epigenetic programming of a genome-rearrangement pathway. Nature 2008, 451:153-158.
  • [65]Mollenbeck M, Zhou Y, Cavalcanti AR, Jonsson F, Higgins BP, Chang WJ, Juranek S, Doak TG, Rozenberg G, Lipps HJ, Landweber LF: The pathway to detangle a scrambled gene. PLoS One 2008, 3:e2330.
  • [66]Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, Bayar E, Lyons J, Rosenfeld CS, Cortes J, Kantarjian HM: Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2', -deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004, 103:1635-1640.
  • [67]Issa JP, Gharibyan V, Cortes J, Jelinek J, Morris G, Verstovsek S, Talpaz M, Garcia-Manero G, Kantarjian HM: Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol 2005, 23:3948-3956.
  • [68]Oki Y, Kantarjian HM, Gharibyan V, Jones D, O'Brien S, Verstovsek S, Cortes J, Morris GM, Garcia-Manero G, Issa JP: Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. Cancer 2007, 109:899-906.
  • [69]Santos FP, Kantarjian H, Garcia-Manero G, Issa JP, Ravandi F: Decitabine in the treatment of myelodysplastic syndromes. Expert Rev Anticancer Ther 2010, 10:9-22.
  • [70]Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST: 5-Aza deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 2005, 25:4727-4741.
  • [71]Si J, Boumber YA, Shu J, Qin T, Ahmed S, He R, Jelinek J, Issa JP: Chromatin remodeling is required for gene reactivation after decitabine-mediated DNA hypomethylation. Cancer Res 2010, 70:6968-6977.
  • [72]Creusot F, Acs G, Christman JK: Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2', -deoxycytidine. J Biol Chem 1982, 257:2041-2048.
  • [73]Gorovsky MA, Hattman S, Pleger GL: ( 6 N)methyl adenine in the nuclear DNA of a eucaryote, Tetrahymena pyriformis. J Cell Biol 1973, 56:697-701.
  • [74]Cummings DJ, Tait A, Goddard JM: Methylated bases in DNA from Paramecium aurelia. Biochim Biophys Acta 1974, 374:1-11.
  • [75]Ammermann D, Steinbruck G, Baur R, Wohlert H: Methylated bases in the DNA of the ciliate Stylonychia mytilus. Eur J Cell Biol 1981, 24:154-156.
  • [76]Juranek S, Wieden HJ, Lipps HJ: De novo , cytosine methylation in the differentiating macronucleus of the stichotrichous ciliate Stylonychia lemnae. Nucleic Acids Res 2003, 31:1387-1391.
  • [77]Mayer W, Niveleau A, Walter J, Fundele R, Haaf T: Embryogenesis - Demethylation of the zygotic paternal genome. Nature 2000, 403:501-502.
  • [78]Wu H, Zhang Y: Mechanisms and functions of Tet protein-mediated 5- methylcytosine oxidation. Genes Dev 2011, 25:2436-2452.
  • [79]Wu SC, Zhang Y: Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010, 11:607-620.
  • [80]Iqbal K, Jin SG, Pfeifer GP, Szabo PE: Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA 2011, 108:3642-3647.
  • [81]Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J: 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2011, 2:241.
  • [82]Serandour AA, Avner S, Oger F, Bizot M, Percevault F, Lucchetti-Miganeh C, Palierne G, Gheeraert C, Barloy-Hubler F, Peron CL, Madigou T, Durand E, Froguel P, Staels B, Lefebvre P, Metivier R, Eeckhoute J, Salbert G: Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation associated enhancers. Nucleic Acids Res 2012.
  • [83]Salvaing J, Aguirre-Lavin T, Boulesteix C, Lehmann G, Debey P, Beaujean N: 5-Methylcytosine and 5-Hydroxymethylcytosine Spatiotemporal Profiles in the Mouse Zygote. PLoS One 2012, 7:e38156.
  • [84]Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011, 473:398-U589.
  • [85]Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PAC, Rappsilber J, Helin K: TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 2011, 473:343-U472.
  • [86]Bhutani N, Burns DM, Blau HM: DNA demethylation dynamics. Cell 2011, 146:866-872.
  • [87]Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC: Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 2004, 32:4100-4108.
  • [88]Mandava CS, Peisker K, Ederth J, Kumar R, Ge X, Szaflarski W, Sanyal S: Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G. Nucleic Acids Res 2012, 40:2054-2064.
  • [89]Remacha M, Jimenez-Diaz A, Santos C, Briones E, Zambrano R, Rodriguez Gabriel MA, Guarinos E, Ballesta JP: Proteins P1, P2, and P0, components of the eukaryotic ribosome stalk. New structural and functional aspects. Biochem Cell Biol 1995, 73:959-968.
  • [90]Rae PM, Spear BB: Macronuclear DNA of the hypotrichous ciliate Oxytricha fallax. Proc Natl Acad Sci USA 1978, 75:4992-4996.
  • [91]Kouzminova E, Selker EU: dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora. Embo Journal 2001, 20:4309-4323.
  • [92]OxyDB, the Oxytricha fallax , genome database [http://oxy.ciliate.org] webcite
  • [93]Rountree MR, Bachman KE, Baylin SB: DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 2000, 25:269-277.
  • [94]Lee GE, Kim JH, Taylor M, Muller MT: DNA Methyltransferase 1-associated Protein (DMAP1) Is a Co-repressor That Stimulates DNA Methylation Globally and Locally at Sites of Double Strand Break Repair. J Biol Chem 2010, 285:37630-37640.
  • [95]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [96]Gene Expression Omnibus [http://www.ncbi.nlm.nih.gov/geo/query/acc. cgi?acc=GSE41060] webcite
  文献评价指标  
  下载次数:78次 浏览次数:17次