| Journal of Neurodevelopmental Disorders | |
| Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins | |
| Xiaocai Gao3  Guifang Zhao1  Junlin Li2  | |
| [1] Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, People’s Republic of China;Institute of Population and Health, College of Life Science, Northwest University, Xi’an 710069, People’s Republic of China;Current address: Taibai Road 229#, Xi’an 710069, People’s Republic of China | |
| 关键词: Neurodevelopmental disorder; Transcriptional regulation; Chromatin acetylation; Bromodomain; | |
| Others : 811484 DOI : 10.1186/1866-1955-5-4 |
|
| received in 2012-06-13, accepted in 2013-01-25, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Neurodevelopmental disorders are classified as diseases that cause abnormal functions of the brain or central nervous system. Children with neurodevelopmental disorders show impaired language and speech abilities, learning and memory damage, and poor motor skills. However, we still know very little about the molecular etiology of these disorders. Recent evidence implicates the bromodomain-containing proteins (BCPs) in the initiation and development of neurodevelopmental disorders. BCPs have a particular domain, the bromodomain (Brd), which was originally identified as specifically binding acetyl-lysine residues at the N-terminus of histone proteins in vitro and in vivo. Other domains of BCPs are responsible for binding partner proteins to form regulatory complexes. Once these complexes are assembled, BCPs alter chromosomal states and regulate gene expression. Some BCP complexes bind nucleosomes, are involved in basal transcription regulation, and influence the transcription of many genes. However, most BCPs are involved in targeting. For example, some BCPs function as a recruitment platform or scaffold through their Brds-binding targeting sites. Others are recruited to form a complex to bind the targeting sites of their partners. The regulation mediated by these proteins is especially critical during normal and abnormal development. Mutant BCPs or dysfunctional BCP-containing complexes are implicated in the initiation and development of neurodevelopmental disorders. However, the pathogenic molecular mechanisms are not fully understood. In this review, we focus on the roles of regulatory BCPs associated with neurodevelopmental disorders, including mental retardation, Fragile X syndrome (FRX), Williams syndrome (WS), Rett syndrome and Rubinstein-Taybi syndrome (RTS). A better understanding of the molecular pathogenesis, based upon the roles of BCPs, will lead to screening of targets for the treatment of neurodevelopmental disorders.
【 授权许可】
2013 Li et al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140709064712739.pdf | 294KB | ||
| Figure 1. | 55KB | Image |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Silva AJ, Ehninger D: Adult reversal of cognitive phenotypes in neurodevelopmental disorders. J Neurodev Disord 2009, 1:150-157.
- [2]van Loo KM, Martens GJ: Genetic and environmental factors in complex neurodevelopmental disorders. Curr Genomics 2007, 8:429-444.
- [3]Weigel AV, Simon B, Tamkun MM, Krapf D: Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc Natl Acad Sci U S A 2011, 108:6438-6443.
- [4]Kaufman L, Ayub M, Vincent JB: The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord 2010, 2:182-209.
- [5]Bochar DA, Savard J, Wang W, Lafleur DW, Moore P, Cote J, Shiekhattar R: A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc Natl Acad Sci U S A 2000, 97:1038-1043.
- [6]Jones MH, Hamana N, Nezu J, Shimane M: A novel family of bromodomain genes. Genomics 2000, 63:40-45.
- [7]Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S: The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell 2003, 113:905-917.
- [8]Cavalleri GL, Walley NM, Soranzo N, Mulley J, Doherty CP, Kapoor A, Depondt C, Lynch JM, Scheffer IE, Heils A, Gehrmann A, Kinirons P, Gandhi S, Satishchandra P, Wood NW, Anand A, Sander T, Berkovic SF, Delanty N, Goldstein DB, Sisodiya SM: A multicenter study of BRD2 as a risk factor for juvenile myoclonic epilepsy. Epilepsia 2007, 48:706-712.
- [9]Li J, Li L, Xing L, Zhang M, Yang X, Zheng Z, Li J, Zhang F, Gao X: Association of BRWD3 gene with mental retardation in Qin-ba mountains region. Journal of Northwest University(Natural Science Edition) 2012, 42:961-965.
- [10]Kuwano Y, Kamio Y, Kawai T, Katsuura S, Inada N, Takaki A, Rokutan K: Autism-associated gene expression in peripheral leucocytes commonly observed between subjects with autism and healthy women having autistic children. PLoS One 2011, 6:e24723.
- [11]Field M, Tarpey PS, Smith R, Edkins S, O’Meara S, Stevens C, Tofts C, Teague J, Butler A, Dicks E, Barthorpe S, Buck G, Cole J, Gray K, Halliday K, Hills K, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Varian J, West S, Widaa S, Mallya U, Wooster R, et al.: Mutations in the BRWD3 gene cause X-linked mental retardation associated with macrocephaly. Am J Hum Genet 2007, 81:367-374.
- [12]Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C, O’Meara S, Latimer C, Dicks E, Menzies A, Stephens P, Blow M, Greenman C, Xue Y, Tyler-Smith C, Thompson D, Gray K, Andrews J, Barthorpe S, Buck G, Cole J, Dunmore R, Jones D, Maddison M, Mironenko T, Turner R, Turrell K, Varian J, West S, Widaa S, et al.: A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet 2009, 41:535-543.
- [13]Banting GS, Barak O, Ames TM, Burnham AC, Kardel MD, Cooch NS, Davidson CE, Godbout R, McDermid HE, Shiekhattar R: CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum Mol Genet 2005, 14:513-524.
- [14]Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ, et al.: Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 1995, 376:348-351.
- [15]Roelfsema JH, White SJ, Ariyurek Y, Bartholdi D, Niedrist D, Papadia F, Bacino CA, den Dunnen JT, van Ommen GJ, Breuning MH, Hennekam RC, Peters DJ: Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am J Hum Genet 2005, 76:572-580.
- [16]Bu P, Evrard YA, Lozano G, Dent SY: Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos. Mol Cell Biol 2007, 27:3405-3416.
- [17]Van Houdt JK, Nowakowska BA, Sousa SB, van Schaik BD, Seuntjens E, Avonce N, Sifrim A, Abdul-Rahman OA, van den Boogaard MJ, Bottani A: Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat Genet 2012, 44:445-449. S1
- [18]Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y, Hibi-Ko Y, Kaname T, Naritomi K, Kawame H, Wakui K, Fukushima Y, Homma T, Kato M, Hiraki Y, Yamagata T, Yano S, Mizuno S, Sakazume S, Ishii T, Nagai T, Shiina M, Ogata K, Ohta T, Niikawa N, Miyatake S, Okada I, Mizuguchi T, Doi H, Saitsu H, Miyake N, et al.: Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet 2012, 44:376-378.
- [19]Makino S, Kaji R, Ando S, Tomizawa M, Yasuno K, Goto S, Matsumoto S, Tabuena MD, Maranon E, Dantes M, Lee LV, Ogasawara K, Tooyama I, Akatsu H, Nishimura M, Tamiya G: Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet 2007, 80:393-406.
- [20]Peserico A, Simone C: Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011, 2011:1-10.
- [21]Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293:1074-1080.
- [22]Jeanmougin F, Wurtz JM, Le Douarin B, Chambon P, Losson R: The bromodomain revisited. Trends Biochem Sci 1997, 22:151-153.
- [23]Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM: Structure and ligand of a histone acetyltransferase bromodomain. Nature 1999, 399:491-496.
- [24]Zeng L, Zhou MM: Bromodomain: an acetyl-lysine binding domain. FEBS Lett 2002, 513:124-128.
- [25]Nakamura Y, Umehara T, Nakano K, Jang MK, Shirouzu M, Morita S, Uda-Tochio H, Hamana H, Terada T, Adachi N, Matsumoto T, Tanaka A, Horikoshi M, Ozato K, Padmanabhan B, Yokoyama S: Crystal structure of the human BRD2 bromodomain: insights into dimerization and recognition of acetylated histone H4. J Biol Chem 2007, 282:4193-4201.
- [26]Huang H, Zhang J, Shen W, Wang X, Wu J, Shi Y: Solution structure of the second bromodomain of Brd2 and its specific interaction with acetylated histone tails. BMC Struct Biol 2007, 7:57. BioMed Central Full Text
- [27]Umehara T, Nakamura Y, Jang MK, Nakano K, Tanaka A, Ozato K, Padmanabhan B, Yokoyama S: Structural basis for acetylated histone H4 recognition by the human BRD2 bromodomain. J Biol Chem 2010, 285:7610-7618.
- [28]Umehara T, Nakamura Y, Wakamori M, Ozato K, Yokoyama S, Padmanabhan B: Structural implications for K5/K12-di-acetylated histone H4 recognition by the second bromodomain of BRD2. FEBS Lett 2010, 584:3901-3908.
- [29]Kalkhoven E: CBP and p300: HATs for different occasions. Biochem Pharmacol 2004, 68:1145-1155.
- [30]Ragvin A, Valvatne H, Erdal S, Arskog V, Tufteland KR, Breen K, OYan AM, Eberharter A, Gibson TJ, Becker PB, Aasland R: Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300. J Mol Biol 2004, 337:773-788.
- [31]Bycroft M: Recognition of non-methyl histone marks. Curr Opin Struct Biol 2011, 21:761-766.
- [32]Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM: Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 2010, 466:258-262.
- [33]Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S: Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012, 149:214-231.
- [34]Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK, Yuen M, Ueberheide B, Dou Y, Muir TW, Patel DJ, Allis CD: Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 2011, 145:692-706.
- [35]Mujtaba S, He Y, Zeng L, Farooq A, Carlson JE, Ott M, Verdin E, Zhou MM: Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 2002, 9:575-586.
- [36]Chen J, Ghazawi FM, Li Q: Interplay of bromodomain and histone acetylation in the regulation of p300-dependent genes. Epigenetics 2010, 5:509-515.
- [37]Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, Schultz DC, Psulkowski E, Fredericks WJ, White DE, Maul GG, Sadofsky MJ, Zhou MM, Rauscher FJ 3rd: PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 2007, 28:823-837.
- [38]Borah JC, Mujtaba S, Karakikes I, Zeng L, Muller M, Patel J, Moshkina N, Morohashi K, Zhang W, Gerona-Navarro G, Hajjar RJ, Zhou MM: A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes. Chem Biol 2011, 18:531-541.
- [39]Filippakopoulos P, Picaud S, Fedorov O, Keller M, Wrobel M, Morgenstern O, Bracher F, Knapp S: Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorg Med Chem 2012, 20:1878-1886.
- [40]Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A: Suppression of inflammation by a synthetic histone mimic. Nature 2010, 468:1119-1123.
- [41]Chung CW, Coste H, White JH, Mirguet O, Wilde J, Gosmini RL, Delves C, Magny SM, Woodward R, Hughes SA, Boursier EV, Flynn H, Bouillot AM, Bamborough P, Brusq JM, Gellibert FJ, Jones EJ, Riou AM, Homes P, Martin SL, Uings IJ, Toum J, Clement CA, Boullay AB, Grimley RL, Blandel FM, Prinjha RK, Lee K, Kirilovsky J, Nicodeme E: Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J Med Chem 2011, 54:3827-3838.
- [42]Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS: BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011, 146:904-917.
- [43]Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE: Selective inhibition of BET bromodomains. Nature 2010, 468:1067-1073.
- [44]Denis GV: Duality in bromodomain-containing protein complexes. Front Biosci 2001, 6:D849-D852.
- [45]Bannister AJ, Kouzarides T: The CBP co-activator is a histone acetyltransferase. Nature 1996, 384:641-643.
- [46]Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y: The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996, 87:953-959.
- [47]Pugh BF: HATs off to PIC assembly. Mol Cell 2006, 23:776-777.
- [48]Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand , Sanchez R, Zeleznik-Le NJ, Ronai Z, Zhou MM: Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 2004, 13:251-263.
- [49]Mantovani F, Drost J, Voorhoeve PM, Del Sal G, Agami R: Gene regulation and tumor suppression by the bromodomain-containing protein BRD7. Cell Cycle 2010, 9:2777-2781.
- [50]Kim S, Lee J, Park J, Chung J: BP75, bromodomain-containing M(r) 75,000 protein, binds dishevelled-1 and enhances Wnt signaling by inactivating glycogen synthase kinase-3 beta. Cancer Res 2003, 63:4792-4795.
- [51]Tae S, Karkhanis V, Velasco K, Yaneva M, Erdjument-Bromage H, Tempst P, Sif S: Bromodomain protein 7 interacts with PRMT5 and PRC2, and is involved in transcriptional repression of their target genes. Nucleic Acids Res 2011, 39:5424-5438.
- [52]Denis GV: Bromodomain coactivators in cancer, obesity, type 2 diabetes, and inflammation. Discov Med 2010, 10:489-499.
- [53]Crowley T, Brunori M, Rhee K, Wang X, Wolgemuth DJ: Change in nuclear-cytoplasmic localization of a double-bromodomain protein during proliferation and differentiation of mouse spinal cord and dorsal root ganglia. Brain Res Dev Brain Res 2004, 149:93-101.
- [54]Shang E, Wang X, Wen D, Greenberg DA, Wolgemuth DJ: Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev Dyn 2009, 238:908-917.
- [55]Gyuris A, Donovan DJ, Seymour KA, Lovasco LA, Smilowitz NR, Halperin AL, Klysik JE, Freiman RN: The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis. Biochim Biophys Acta 2009, 1789:413-421.
- [56]Denis GV, McComb ME, Faller DV, Sinha A, Romesser PB, Costello CE: Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J Proteome Res 2006, 5:502-511.
- [57]Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M: Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 2005, 436:871-875.
- [58]Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996, 84:843-851.
- [59]Wang L, Liu L, Berger SL: Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev 1998, 12:640-653.
- [60]Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA: The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 2000, 19:6141-6149.
- [61]Lin W, Zhang Z, Chen CH, Behringer RR, Dent SY: Proper Gcn5 histone acetyltransferase expression is required for normal anteroposterior patterning of the mouse skeleton. Dev Growth Differ 2008, 50:321-330.
- [62]Dutnall RN, Tafrov ST, Sternglanz R, Ramakrishnan V: Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 1998, 94:427-438.
- [63]Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A: Histone acetylation and disease. Cell Mol Life Sci 2001, 58:728-736.
- [64]Murata T, Kurokawa R, Krones A, Tatsumi K, Ishii M, Taki T, Masuno M, Ohashi H, Yanagisawa M, Rosenfeld MG, Glass CK, Hayashi Y: Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein-Taybi syndrome. Hum Mol Genet 2001, 10:1071-1076.
- [65]Paulson HL, Fischbeck KH: Trinucleotide repeats in neurogenetic disorders. Annu Rev Neurosci 1996, 19:79-107.
- [66]Berry-Kravis E, Knox A, Hervey C: Targeted treatments for fragile X syndrome. J Neurodev Disord 2011, 3:193-210.
- [67]Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, Barco A: Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 2004, 42:947-959.
- [68]Urdinguio RG, Sanchez-Mut JV, Esteller M: Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009, 8:1056-1072.
- [69]Kramer JM, van Bokhoven H: Genetic and epigenetic defects in mental retardation. Int J Biochem Cell Biol 2009, 41:96-107.
- [70]Fyodorov DV, Kadonaga JT: The many faces of chromatin remodeling: SWItching beyond transcription. Cell 2001, 106:523-525.
- [71]Khavari PA, Peterson CL, Tamkun JW, Mendel DB, Crabtree GR: BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 1993, 366:170-174.
- [72]Laurent BC, Treich I, Carlson M: Role of yeast SNF and SWI proteins in transcriptional activation. Cold Spring Harb Symp Quant Biol 1993, 58:257-263.
- [73]Gibbons RJ, Picketts DJ, Villard L, Higgs DR: Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 1995, 80:837-845.
- [74]Gibbons RJ, Higgs DR: Molecular-clinical spectrum of the ATR-X syndrome. Am J Med Genet 2000, 97:204-212.
- [75]Elfring LK, Daniel C, Papoulas O, Deuring R, Sarte M, Moseley S, Beek SJ, Waldrip WR, Daubresse G, DePace A, Kennison JA, Tamkun JW: Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 1998, 148:251-265.
- [76]Oya H, Yokoyama A, Yamaoka I, Fujiki R, Yonezawa M, Youn MY, Takada I, Kato S, Kitagawa H: Phosphorylation of Williams syndrome transcription factor by MAPK induces a switching between two distinct chromatin remodeling complexes. J Biol Chem 2009, 284:32472-32482.
- [77]Collins N, Poot RA, Kukimoto I, Garcia-Jimenez C, Dellaire G, Varga-Weisz PD: An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 2002, 32:627-632.
- [78]Lu X, Meng X, Morris CA, Keating MT: A novel human gene, WSTF, is deleted in Williams syndrome. Genomics 1998, 54:241-249.
- [79]Perez Jurado AL: Williams-Beuren syndrome: a model of recurrent genomic mutation. Horm Res 2003, 59(Suppl 1):106-113.
- [80]Pober BR: Williams-Beuren syndrome. N Engl J Med 2010, 362:239-252.
- [81]Kitagawa H, Fujiki R, Yoshimura K, Oya H, Kato S: Williams syndrome is an epigenome-regulator disease. Endocr J 2011, 58:77-85.
- [82]Zoghbi HY: Postnatal neurodevelopmental disorders: meeting at the synapse? Science 2003, 302:826-830.
- [83]Kavalali ET, Nelson ED, Monteggia LM: Role of MeCP2, DNA methylation, and HDACs in regulating synapse function. J Neurodev Disord 2011, 3:250-256.
- [84]Guy J, Hendrich B, Holmes M, Martin JE, Bird A: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 2001, 27:322-326.
- [85]Nan X, Hou J, Maclean A, Nasir J, Lafuente MJ, Shu X, Kriaucionis S, Bird A: Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc Natl Acad Sci U S A 2007, 104:2709-2714.
- [86]Zachariah RM, Rastegar M: Linking epigenetics to human disease and Rett syndrome: the emerging novel and challenging concepts in MeCP2 research. Neural Plast 2012, 2012:415825.
- [87]Severinsen JE, Bjarkam CR, Kiaer-Larsen S, Olsen IM, Nielsen MM, Blechingberg J, Nielsen AL, Holm IE, Foldager L, Young BD, Muir WJ, Blackwood DH, Corydon TJ, Mors O, Børglum AD: Evidence implicating BRD1 with brain development and susceptibility to both schizophrenia and bipolar affective disorder. Mol Psychiatry 2006, 11:1126-1138.
- [88]Glatt S, Alfieri C, Muller CW: Recognizing and remodeling the nucleosome. Curr Opin Struct Biol 2011, 21:335-341.
- [89]Matangkasombut O, Buratowski RM, Swilling NW, Buratowski S: Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev 2000, 14:951-962.
- [90]Muller S, Filippakopoulos P, Knapp S: Bromodomains as therapeutic targets. Expert Rev Mol Med 2011, 13:e29.
- [91]Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P: GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 2006, 3:429-438.
- [92]Schaefer A, Tarakhovsky A, Greengard P: Epigenetic mechanisms of mental retardation. Prog Drug Res 2011, 67:125-146.
PDF