期刊论文详细信息
Journal of Neuroinflammation
The CCL2 synthesis inhibitor bindarit targets cells of the neurovascular unit, and suppresses experimental autoimmune encephalomyelitis
Joel S Pachter2  Angelo Guglielmotti1  Robert Cone3  Carolyn Keating2  Debayon Paul2  Bandana Shrestha2  Shujun Ge2 
[1] Angelini R&D, Angelini Research Center, S. Palomba-Pomezia, Rome, 00040, Italy;Department of Cell Biology, Blood–brain Barrier Laboratory, 263 Farmington Ave., Farmington, CT, 06030, USA;Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
关键词: Microglia;    Astrocytes;    Brain microvascular endothelial cells;    Neurovascular unit;    Blood–brain barrier;    Neuroinflammation;    CCL2;   
Others  :  1160380
DOI  :  10.1186/1742-2094-9-171
 received in 2012-03-23, accepted in 2012-07-12,  发布年份 2012
PDF
【 摘 要 】

Background

Production of the chemokine CCL2 by cells of the neurovascular unit (NVU) drives critical aspects of neuroinflammation. Suppression of CCL2 therefore holds promise in treating neuroinflammatory disease. Accordingly, we sought to determine if the compound bindarit, which inhibits CCL2 synthesis, could repress the three NVU sources of CCL2 most commonly reported in neuroinflammation – astrocytes, microglia and brain microvascular endothelial cells (BMEC) – as well as modify the clinical course of neuroinflammatory disease.

Methods

The effect of bindarit on CCL2 expression by cultured murine astrocytes, microglia and BMEC was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bindarit action on mouse brain and spinal cord in vivo was similarly investigated by qRT-PCR following LPS injection in mice. And to further gauge the potential remedial effects of bindarit on neuroinflammatory disease, its impact on the clinical course of experimental autoimmune encephalomyelitis (EAE) in mice was also explored.

Results

Bindarit repressed CCL2 expression by all three cultured cells, and antagonized upregulated expression of CCL2 in both brain and spinal cord in vivo following LPS administration. Bindarit also significantly modified the course and severity of clinical EAE, diminished the incidence and onset of disease, and evidenced signs of disease reversal.

Conclusion

Bindarit was effective in suppressing CCL2 expression by cultured NVU cells as well as brain and spinal cord tissue in vivo. It further modulated the course of clinical EAE in both preventative and therapeutic ways. Collectively, these results suggest that bindarit might prove an effective treatment for neuroinflammatory disease.

【 授权许可】

   
2012 Ge et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410103130627.pdf 561KB PDF download
Figure 7 . 35KB Image download
Figure 6 . 18KB Image download
Figure 5 . 51KB Image download
Figure 4 . 42KB Image download
Figure 3 . 51KB Image download
Figure 2 . 57KB Image download
Figure 1 . 54KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

Figure 6 .

Figure 7 .

【 参考文献 】
  • [1]Mahad DJ, Ransohoff RM: The role of (MCP-1) CCL2 and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Sem Immunol 2003, 15:23-32.
  • [2]Eugenin EA, Osieki K, Lopez L, Goldstein H, Calderon TM, Bruce-Keller AJ, Huaser KF: CCL2/monocyte chemoattractant protein-1 mediates and enhances transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 2006, 26:1098-1106.
  • [3]Fujioka T, Purev E, Rostami A: Chemokine mRNA expression in the cauda equina of Lewis rats with experimental allergic neuritis. J Neuroimmunol 1999, 97:51-59.
  • [4]Hickman SE, El Khoury J: Mechanisms of mononuclear phagocyte recruitment in Alzheimer’s disease. CNS Neurol Disord Drug Targets 2010, 9:168-173.
  • [5]Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, Vogel SN: Overexpression of monocyte chemoattractant protein-1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 2003, 23:748-755.
  • [6]Rancan M, Otto VI, Hans VH, Gerlach I, Jork R, Trentz O, Kossman T, Morganti-Kossman MC: Upregulation of ICAM-1 and MCP-1, but not MIP-1 and sensorimotor deficit in response to traumatic axonal injury in rats. J Neurosci Res 2001, 63:438-446.
  • [7]Foresti M, Arisi GM, Katki K, Montanez A, Sanchez RM, Shapiro LA: Chemokine CCL2 and its receptor CCR2 are increased in the hippocampus following pilocarpine-induced status epilepticus. J Neuroinflamm 2009, 6:40-50. BioMed Central Full Text
  • [8]Waki H, Gouraud SS, Maeda M, Paton JF: Specific inflammatory condition in nucleus solitarii of the SHR: novel insight for neurogenic hypertension. Auton Neurosci 2008, 142:25-31.
  • [9]Sullivan EV, Zahr NM: Neuroinflammation as a neurotoxic mechanism in alcoholism: commentary on “increased MCP-1 and microglia in various regions of human alcoholic brain. Exp Neurol 2008, 213:10-17.
  • [10]Song L, Pachter JS: Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc Res 2004, 67:78-89.
  • [11]Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV: Potential role of MCP-1 in endothelial cell tight junction ‘opening’: signaling via Rho and Rho kinase. J Cell Sci 2003, 116:4615-4628.
  • [12]Yao Y, Tsirka SE: Truncation of monocyte chemoattractant protein-1 by plasmin promotes blood–brain barrier disruption. J Cell Sci 2011, 124:1486-1495.
  • [13]Fuentes ME, Durham SK, Swerdel MR, Lewin AC, Barton DS, Megill JR, Bravo R, Lira SA: Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J Immunol 1995, 155:5769-5776.
  • [14]Huang D, Tani M, Han Y, He TT, Weaver J, Charo IF, Tuohy VK, Rollins BJ, Ransohoff RM: Pertussis toxin-induced reversible encephalopathy dependent on monocyte chemoattractant protein-1 overexpression in mice. J Neurosci 2002, 22:10633-10642.
  • [15]Babcock AA, Kuziel WA, Rivest S, Owens T: Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 2003, 23:7922-7930.
  • [16]Toft-Hansen H, Buist R, Sun XJ, Schellenberg A, Peeling J, Owens T: Metalloproteinases control brain inflammation by pertussis toxin in mice overexpressing the chemokine CCL2 in the central nervous system. J Immunol 2006, 177:7242-7249.
  • [17]Yadav A, Saini V, Avora S: MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 2010, 411:1570-1579.
  • [18]Dawson J, Miltz W, Mir AK, Weissner C: Targeting monocyte chemoattractant protein-1 signalling in disease. Expert Opin Ther Targets 2003, 7:35-48.
  • [19]Izikon L, Klein RS, Luster AD, Weiner HL: Targeting monocyte recruitment in CNS autoimmune disease. Clin Immnunol 2002, 103:125-131.
  • [20]Semple BD, Kossman T, Morganti-Kossman MC: Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CCR2 networks. J Cereb Blood Flow Metab 2010, 30:459-473.
  • [21]Karpus WJ, Reynolds N, Behanna HA, Van Eldik LJ, Watterson DM: Inhibition of experimental autoimmune encephalomyelitis by a novel small molecular weight proinflammatory cytokine suppressing drug. J Neuroimmunol 2008, 203:73-78.
  • [22]Guo X, Nakamura K, Kohyama K, Harada C, Behanna HA, Watterson DM, Matsumoto Y, Harada T: Inhibition of glial activation ameliorates the severity of experimental autoimmune encephalomyelitis. Neurosci Res 2007, 59:457-466.
  • [23]Handel TM, Johnson Z, Rodrigues DH, dos Santos AC, Cirillo R, Muzio V, Riva S, Mack M, Deruaz M, Borlat F, Vitte P-A, Wells TNC, Teixera MM, Proudfoot AEI: An engineered monomer of CCL2 has antiinflammatory properties emphasizing the importance of oligomerization for chemokine activity in vivo. J Leuk Biol 2008, 84:1101-1108.
  • [24]Brini E, Ruffini F, Bergamin A, Brambilla E, Dati G, Greco B, Cirillo R, Proudfoot AEI, Comi G, Furlan R, Zaratin P, Martino G: Administration of a monomeric CCL2 variant to EAE mice inhibits inflammatory cell recruitment and protects from demyelination and axonal loss. J Neuroimmunol 2009, 209:33-39.
  • [25]Brodmerkel CM, Huber R, Covington M, Diamond S, Hall L, Collins R, Leffet L, Gallagher K, Feldman P, Collier P, Stow M, Gu X, Baribund F, Shin N, Thomas B, Burn T, Hollis G, Yeleswaram S, Solomon K, Friedman S, Wang A, Xue CB, Newton RC, Scherle P, Vaddi K: Discovery and pharmacological characterization of a novel rodent-active CCR2 antagonist, INCB334. J Immunol 2005, 175:5370-5378.
  • [26]Wang Y, Cui L, Gonsiorek W, Min S-H, Anilkumar G, Rosenblum S, Kozlowski J, Lundell D, Fine JS, Grant EP: CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis. J Neuroinflamm. 2009, 6:32-46. BioMed Central Full Text
  • [27]Piccinini AM, Kneble K, Rek A, Wildner G, Diedrichs-Mohring M, Kungle AJ: Rationally evolving MCP-1/CCL2 into a decoy protein with potent anti-inflammatory activity in vivo. J Biol Chem 2010, 285:8782-8792.
  • [28]Gay F: Activated microglia in primary progressive MS lesions: defenders or aggressors? Int Ms 2007, 14:78-83.
  • [29]Sanders P, De Kayser J: Janus faces of microglia in multiple sclerosis. Brain Res Rev 2007, 54:274-285.
  • [30]Ghandi NS, Mancera RL: The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Des 2008, 72:455-482.
  • [31]Horuk R: Chemokine receptor antagonists: overcoming developmental hurdles. Nat Rev Drug Disc 2009, 8:23-33.
  • [32]Cioli V, Ciarniello MG, Guglielmotti A, Luparini MR, Durando L, Martinelli B, Catanese B, Fava L, Silvestrini B: A new possible protein antidenaturant agent, bindarit, reduces secondary phase adjuvant arthritis in rats. J Rheumatol 1992, 19:1735-1742.
  • [33]Mirolo M, Fabbri M, Sironi M, Vecchi A, Guglielmotti A, Mangano G, Biondi G, Locati M, Mantovani A: Impact of the anti-inflammatory agent bindarit on the chemokinome: selective inhibition of the monocyte chemoattractant proteins. Eur Cytokine Netw 2008, 19:119-122.
  • [34]Bhatia M, Ramath RD, Chevali L, Guglielmotti A: Treatment with bindarit, a blocker of MCP-1 synthesis, protects mice against acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2005, 288:G1259-G1265.
  • [35]Guglielmotti A, D’Onofrio E, Coletta I, Aquilini L, Milanese C, Pinza M: Amelioration of rat adjuvant arthritis by therapeutic treatment with bindarit, an inhibitor of MCP-1 and TNF-alpha production. Inflamm Res 2002, 51:252-258.
  • [36]Guglielmotti A, Aquilini L, D’Onofrio F, Rosignoli MT, Milanese C, Pinza M: Bindarit prolongs survival and reduces renal damage in NZB/W lupus mice. Clini Exp Rheumatol 1998, 16:149-154.
  • [37]Grassia G, Maddaluno M, Guglielmotti A, Mangano G, Biondi G, Maffia P, Ialenti A: The anti-inflammatory agent bindarit inhibits neointima formation in both rats and hyperlipodaemic mice. Cardiovasc Res 2009, 84:485-493.
  • [38]Lin J, Zhu X, Chade A, Jordan KL, Lavi R, Daghini E, Gibson ME, Guglielmotti A, Lerman A, Lerman LO: Monocyte chemoattractant proteins mediate microvascular dysfunction in swine renovascular hypertension. Arterioscler Thromb Vasc Biol 2009, 29:1810-1816.
  • [39]Ruggenenti P: Effects of MCP-1 inhibition by bindarit therapy in type 2 diabetes subjects with micro- or macro-albuminuria. J Am Soc Nephrol 2009, 21:44A. [Abstract]
  • [40]Ble A, Mosca M, Di Loreto G, Guglielmotti A, Biondi G, Bombardieri S, Remuzzi G, Ruggenenti P: Antiproteinuric effect of chemokine cc-motif ligand 2 inhibition in subjects with acute proliferative lupus nephritis. Am J Nephrol 2011, 34:367-372.
  • [41]Vangilder RL, Rosen CL, Barr TL, Huber JD: Targeting the neurovascular unit for treatment of neurological disorders. Pharmacol Ther 2011, 139:239-247.
  • [42]Mahad D, Callaghan MK, Williams KA, Ubogu EE, Kivisakk P, Tucky B, Kidd G, Kingsbury GA, Change A, Fox RJ, Mack M, Sniderman MB, Ravid R, Staugaitis SM, Stins MF, Ransohoff RM: Modulating CCR2 and CCL2 at the blood–brain barrier: relevance for multiple sclerosis pathogenesis. Brain 2006, 129:212-223.
  • [43]Conductier G, Blondeau N, Guyon A, Nahon JL, Rovere C: The role of monocyte chemoattractant protein MCP-/CCL2 in neuroinflammatory diseases. J Neuroimmunol 2010, 224:93-100.
  • [44]Baxter AG: The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 2007, 7:904-912.
  • [45]Krishnamoorthy G, Wekerle H: EAE: an immunologist’s magic eye. Eur J Immunol 2009, 39:2031-2035.
  • [46]Ge S, Pachter JS: Caveolin-1 knockdown by small interfering RNA suppresses responses to the chemokine monocyte chemoattractant protein-1 by human astrocytes. J Biol Chem 2004, 2004(279):6688-6695.
  • [47]Hamby ME, Uliasz TF, Hewett SJ, Hewett JA: Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes. J Neurosci Methods 2006, 150:128-137.
  • [48]Song L, Pachter JS: Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins. In Vitro Cell Devel Biol 2003, 39:313-320.
  • [49]Suen WE, Bergman CM, Hjelstrom P, Ruddle NH: A critical role for lymphotoxin in experimental allergic encephalomyelitis. J Exp Med 1997, 1865:1233-1240.
  • [50]Juedes AE, Hjlemstrom P, Bergman CM, Neild L, Ruddle NH: Kinetics and cellular origin of cytokines in the central nervous system: Insight into mechanisms of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. J Immunol 2000, 164:410-426.
  • [51]Ge S, Murugesan N, Pachter JS: Astrocyte- and Endothelial-Targeted CCL2 Conditional Knockout Mice: Critical Tools for Studying the Pathogenesis of Neuroinflammation. J Mol Neurosci 2009, 39:269-283.
  • [52]Stromnes I, Goverman J: Active induction of experimental allergic encephalomyelitis. Nat Protoc 2006, 1:1810-1819.
  • [53]Jones MV, Nguyen TT, Beboy CA, Griffin JW, Whartenby KA, Kerr DA, Calabresi PA: Behavioral and pathological outcomes in MOG 35–55 experimental autoimmune encephalomyelitis. J Neuroimmunol 2008, 199:83-93.
  • [54]Mora E, Guglielmotti A, Biondi G, Sassone-Corsi P: Bindarit: an anti-inflammatory small molecule that modulates the NFkB pathway. Cell Cycle 2012, 11:159-169.
  • [55]Berman JW, Guida MP, Warren J, Amat J, Brosnan CF: Localization of monocyte chemoattractant protein-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol 1996, 156:3017-3023.
  • [56]Adamus G, Machnicki M, Amundson D, Adlard K, Offner H: Similar pattern of CCL2 expression in spinal cords and eyes of Lewis rats with experimental autoimmune encephalomyelitis. Associated uveitis. J Neurosci Res 1997, 50:531-538.
  • [57]Basso AS, Frenkel D, Quintana FJ, Costa-Pinto FA, Petrovic-Stojkovic S, Puckett L, Monsonegro A, Bar-Shir A, Engel Y, Gozin M, Weiner HL: Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J Clin Invest 2008, 118:1532-1543.
  • [58]Tokuhara N, Namiki K, Uesigi M, Miyamoto C, Ohgoh M, Ido K, Yoshinaga T, Yamauchi T, Kuromitsu J, Kimura S, Miyamoto N, Kasuya Y: N-type calcium channel in the pathogenesis of experimental autoimmune encephalomyelitis. J Biol Chem 2010, 285:33294-33306.
  • [59]Yi J, Boado RJ, Pardridge WM: Blood–brain barrier genomics. J Cereb Blood Flow Metab 2001, 21:61-68.
  • [60]Carson MJ: Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis. Glia 2002, 40:218-231.
  • [61]Milner R, Campbell IL: The extracellular matrix and cytokines regulate microglial integrin expression and activation. J Immunol 2003, 170:3850-3858.
  • [62]Kim SU, de Vellis J: Microglia in health and disease. J Neurosci Res 2005, 81:302-313.
  • [63]Lehnardt S: Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 2010, 58:253-283.
  • [64]D’Mello C, Le T, Swain MG: Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor alpha signaling during peripheral inflammation. J Neurosci 2009, 2009:2089-2912.
  • [65]Yao H, Yang Y, Kim KJ, Bethel-Brown C, Gong N, Funa K, Gendelman HE, Su TP, Wang JQ, Buch S: Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: implication for increased monocyte transmigration. Blood 2010, 115:4951-4962.
  • [66]Deng YY, Lu J, Ling EA, Kaur C: Monocyte chemoattractant protein-1 (MCP-1) produced via NF-kappaB signaling pathway mediates migration of amoeboid microglia in the periventricular white matter in hypoxic neonatal rats. Glia 2009, 57:604-621.
  • [67]Hinojosa AE, Garcia-Bueno B, Leza JC, Madrigal JL: CCL2/MCP-1 modulation of microglial activation and proliferation. J Neuroinflamm. 2011, 8:77-86. BioMed Central Full Text
  • [68]Thacker MA, Thacker MA, Clark AK, Bishop T, Grist J, Yip PK, Moon LD, Thompson SW, Marchand F, McMahon SB: CCL2 is key player of microglial activation in neuropathic pain states. Eur J Pain 2009, 13:263-272.
  • [69]Zeevi N, Pachter J, McCullough LD, Wolfson L, Kuchel GA: The blood–brain barrier: geriatric relevance of a critical brain-body interface. J Am Geriatr Soc 2010, 58:1749-1757.
  • [70]Greenwood J, Heasman SJ, Alvaraez JI, Prat A, Lyck R, Engelhardt B: Review: leukocyte-endothelial cell crosstalk at the blood–brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 2011, 37:24-39.
  • [71]Subileau EA, Rezaie P, Davies HA, Colyer FM, Greenwood J, Male DK, Romero IA: Expression of chemokines and their receptors by human brain endothelium: implications for multiple sclerosis. J Neuropathol Exp Neurol 2009, 68:227-240.
  • [72]dos Santos AC, Barsante MM, Arantes RME, Bernard CCA, Teixera MM, Carvalho-Tavares J: CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis – an intravital microscopy study. J Neuroimmunol 2005, 162:122-129.
  • [73]Kennedy KJ, Streiter RM, Kunkel SL, Lukacs NW, Karpus WJ: Acute and relapsing autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1α and monocyte chemoattractant protein-1. J Neuroimmunol 1998, 92:98-108.
  • [74]Chakravarty L, Rogers L, Quach T, Breckenridge S, Kolattukudy PE: Lysine 58 and histidine 66 at the C-terminal alpha helix of monocyte chemoattractant protein-1 are essential for glycosaminoglycan binding. J Biol Chem 1998, 273:29641-29647.
  • [75]Gerzten RE, Garcia-Zapeda EA, Lim Y-C, Yoshida M, Ding H, Gimbrone MA, Luster AD, Luscinskas FW, Rosenzweig A: MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999, 398:718-723.
  • [76]Hardy LA, Booth TA, Lau EK, Handel TM, Ali S, Kirby JA: Examination of CCL2 partitioning and presentation during transendothelial migration. Lab Invest 2004, 84:81-90.
  • [77]Chui R, Dorovini-Zis K: Regulation of CCl2 and CCL3 expression in human brain endothelial cells by cytokines and lipopolysaccharide. J Neuroinflamm. 2010, 7:1-12. BioMed Central Full Text
  • [78]Farina C, Aloisi F, Meinl E: Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007, 28:138-145.
  • [79]Banks WA, Erickson MA: The blood–brain barrier and immune function and dysfunction. Neurobiol Dis 2010, 37:26-32.
  • [80]Aid S, Silva AC, Candelario-Jalil E, Choi SH, Rosenberg GA, Bosetti F: Cyclooxygenase-1 and −2 differentially modulate lipopolysaccharide-induced blood–brain barrier disruption through matrix metalloproteinase activity. J Cereb Blood Flow Metab 2010, 30:370-380.
  • [81]Laborde E, Macsata RW, Meng F, Peterson BT, Robinson L, Schow SR, Simon RJ, Xu H, Baba K, Inagaki H, Ishiwata Y, Jomori T, Matsumoto Y, Miyachi A, Nakamura T, Okamoto M, Handel TM, Bernard CCA: Discovery, optimization, and pharmacological characterization of novel heteroaryoylphenylureas antagonists of C-C ligand 2 function. J Med Chem 2011, 54:1667-1681.
  • [82]Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM: Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 2001, 193:713-726.
  • [83]Dogan RN, Elhofy A, Karpus WJ: Production of CCL2 by central nervous system cells regulates development of murine experimental autoimmune encephalomyelitis through the recruitment of TNF- and INOS-expressing macrophages and myeloid dendritic cells. J Immunol 2008, 180:7376-7384.
  • [84]Thompson WL, Karpus WJ, Van Eldick LJ: MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflammation 2008, 15:5-35.
  文献评价指标  
  下载次数:93次 浏览次数:43次