期刊论文详细信息
Journal of Clinical Bioinformatics
PROGgene: gene expression based survival analysis web application for multiple cancers
Harikrishna Nakshatri2  Chirayu Pankaj Goswami1 
[1] Thomas Jefferson University Hospitals, 117 S 11th Street, Suite 207, Philadelphia, PA 19107, USA;Departments of Surgery, Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
关键词: KM;    Meier;    Kaplan;    Database;    mRNA;    Prognostic;    Pan cancer;    Survival;    Multiple cancer;    Biomarker;   
Others  :  801349
DOI  :  10.1186/2043-9113-3-22
 received in 2013-08-26, accepted in 2013-10-20,  发布年份 2013
PDF
【 摘 要 】

Background

Identification of prognostic mRNA biomarkers has been done for various cancer types. The data that are published from such studies are archived in public repositories. There are hundreds of such datasets available for multiple cancer types in public repositories. Wealth of such data can be utilized to study prognostic implications of mRNA in different cancers as well as in different populations or subtypes of same cancer.

Description

We have created a web application that can be used for studying prognostic implications of mRNA biomarkers in a variety of cancers. We have compiled data from public repositories such as GEO, EBI Array Express and The Cancer Genome Atlas for creating this tool. With 64 patient series from 18 cancer types in our database, this tool provides the most comprehensive resource available for survival analysis to date. The tool is called PROGgene and it is available at http://www.compbio.iupui.edu/proggene webcite.

Conclusions

We present this tool as a hypothesis generation tool for researchers to identify potential prognostic mRNA biomarkers to follow up with further research. For this reason, we have kept the web application very simple and straightforward. We believe this tool will be useful in accelerating biomarker discovery in cancer and quickly providing results that may indicate disease-specific prognostic value of specific biomarkers.

【 授权许可】

   
2013 Goswami and Nakshatri; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708005152208.pdf 1469KB PDF download
Figure 4. 79KB Image download
Figure 3. 66KB Image download
Figure 2. 112KB Image download
Figure 1. 152KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Buyse M, Loi S, van’t Veer L, et al.: TRANSBIG consortium: validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 2006, 98(17):1183-1192.
  • [2]Parker JS, Mullins M, Cheang MC, et al.: Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009, 27(8):1160-1167.
  • [3]Paik S, Shak S, Tang G, et al.: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004, 351(27):2817-2826.
  • [4]Tan IB, Tan P: Genetics: an 18-gene signature (ColoPrint®) for colon cancer prognosis. Nat Rev Clin Oncol 2011, 8(3):131-133.
  • [5]Yi JM, Dhir M, Van Neste L, et al.: Genomic and epigenomic integration identifies a prognostic signature in colon cancer. Clin Cancer Res 2011, 17(6):1535-1545.
  • [6]Budhu A, Forgues M, Ye QH, et al.: Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006, 10(2):99-111.
  • [7]Lu Y, Lemon W, Liu PY, et al.: A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med 2006, 3(12):e12.
  • [8]Hsu YC, Yuan S, Chen HY, et al.: A four-gene signature from NCI-60 cell line for survival prediction in non-small cell lung cancer. Clin Cancer Res 2009, 15(23):7309-7315.
  • [9]Sergeant G, Van Eijsden R, Roskams T, Van Duppen V, Topal B: Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery. BMC Cancer 2012, 12(1):527. BioMed Central Full Text
  • [10]Iliopoulos D, Polytarchou C, Hatziapostolou M, et al.: MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal 2009, 2(92):ra62.
  • [11]Heron-Milhavet L, Khouya N, Fernandez A, Lamb NJ: Akt1 and Akt2: differentiating the aktion. Histol Histopathol 2011, 26(5):651-662.
  • [12]Nakatani K, Thompson DA, Barthel A, et al.: Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J Biol Chem 1999, 274(31):21528-21532.
  • [13]Banerji S, Cibulskis K, Rangel-Escareno C, et al.: Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012, 486(7403):405-409.
  • [14]Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z: An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treat 2010, 123(3):725-731.
  • [15]Gyorffy B, Lanczky A, Szallasi Z: Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data of 1287 patients. Endocr Relat Cancer 2012, 19(2):197-208.
  • [16]Elfilali A, Lair S, Verbeke C, La Rosa P, Radvanyi F, Barillot E: ITTACA: a new database for integrated tumor transcriptome array and clinical data analysis. Nucleic Acids Res 2006, 34(Database issue):D613-D616.
  • [17]Mizuno H, Kitada K, Nakai K, Sarai A: PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics 2009, 2:18. BioMed Central Full Text
  • [18]http://www.php.net
  • [19]http://www.mysql.com
  • [20]van de Vijver MJ, He YD, van’t Veer LJ, et al.: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347(25):1999-2009.
  • [21]Schmidt M, Böhm D, Von Törne C, et al.: The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 2008, 68(13):5405-5413. Doi: 10.1158/0008-5472.CAN-07-5206
  • [22]Yoshihara K, Tsunoda T, Shigemizu D, et al.: High-risk ovarian cancer based on 126-gene expression signature is uniquely characterized by downregulation of antigen presentation pathway. Clin Cancer Res 2012, 18(5):1374-1385.
  • [23]Crijns AP, Fehrmann RS, De Jong S, Gerbens F, Meersma GJ, Klip HG, Hollema H, Hofstra RM, Te Meerman GJ, De Vries EG, van der Zee AG: Survival-related profile, pathways, and transcription factors in ovarian cancer. PLoS Med 2009, 6(2):e24.
  文献评价指标  
  下载次数:73次 浏览次数:22次