期刊论文详细信息
Clinical Epigenetics
Is Friedreich ataxia an epigenetic disorder?
Karen Usdin1  Daman Kumari1 
[1] Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
关键词: triplex;    splicing;    transcription;    histone modifications;    heterochromatin;    Friedreich ataxia;   
Others  :  791488
DOI  :  10.1186/1868-7083-4-2
 received in 2011-08-18, accepted in 2012-01-30,  发布年份 2012
PDF
【 摘 要 】

Friedreich ataxia (FRDA) is a debilitating and frequently fatal neurological disorder that is recessively inherited. It belongs to the group of genetic disorders known as the Repeat Expansion Diseases, in which pathology arises from the deleterious consequences of the inheritance of a tandem repeat array whose repeat number exceeds a critical threshold. In the case of FRDA, the repeat unit is the triplet GAA•TTC and the tandem array is located in the first intron of the frataxin (FXN) gene. Pathology arises because expanded alleles make lower than normal levels of mature FXN mRNA and thus reduced levels of frataxin, the FXN gene product. The repeats form a variety of unusual DNA structures that have the potential to affect gene expression in a number of ways. For example, triplex formation in vitro and in bacteria leads to the formation of persistent RNA:DNA hybrids that block transcription. In addition, these repeats have been shown to affect splicing in model systems. More recently, it has been shown that the region flanking the repeats in the FXN gene is enriched for epigenetic marks characteristic of transcriptionally repressed regions of the genome. However, exactly how repeats in an intron cause the FXN mRNA deficit in FRDA has been the subject of much debate. Identifying the mechanism or mechanisms responsible for the FXN mRNA deficit in FRDA is important for the development of treatments for this currently incurable disorder. This review discusses evidence for and against different models for the repeat-mediated mRNA deficit.

【 授权许可】

   
2012 Kumari and Usdin; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705013825814.pdf 3125KB PDF download
Fig.1. 44KB Image download
Figure 4. 36KB Image download
Figure 3. 63KB Image download
Figure 2. 53KB Image download
Figure 1. 18KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Fig.1.

【 参考文献 】
  • [1]Cossee M, Schmitt M, Campuzano V, Reutenauer L, Moutou C, Mandel JL, Koenig M: Evolution of the Friedreich's ataxia trinucleotide repeat expansion: founder effect and premutations. Proc Natl Acad Sci USA 1997, 94:7452-7457.
  • [2]Harding AE: Early onset cerebellar ataxia with retained tendon reflexes: a clinical and genetic study of a disorder distinct from Friedreich's ataxia. J Neurol Neurosurg Psychiatry 1981, 44:503-508.
  • [3]Harding AE, Zilkha KJ: 'Pseudo-dominant' inheritance in Friedreich's ataxia. J Med Genet 1981, 18:285-287.
  • [4]Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Cañizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M: Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996, 271:1423-1427.
  • [5]Clark RM, Dalgliesh GL, Endres D, Gomez M, Taylor J, Bidichandani SI: Expansion of GAA triplet repeats in the human genome: unique origin of the FRDA mutation at the center of an Alu. Genomics 2004, 83:373-383.
  • [6]Pearson CE, Nichol Edamura K, Cleary JD: Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 2005, 6:729-742.
  • [7]Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S, Trottier Y, Kish SJ, Faucheux B, Trouillas P, Authier FJ, Dürr A, Mandel JL, Vescovi A, Pandolfo M, Koenig M: Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 1997, 6:1771-1780.
  • [8]Cossee M, Puccio H, Gansmuller A, Koutnikova H, Dierich A, LeMeur M, Fischbeck K, Dolle P, Koenig M: Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 2000, 9:1219-1226.
  • [9]Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P: Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 1997, 17:215-217.
  • [10]Punga T, Buhler M: Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Mol Med 2010, 2:120-129.
  • [11]Grabczyk E, Usdin K: The GAA*TTC triplet repeat expanded in Friedreich's ataxia impedes transcription elongation by T7 RNA polymerase in a length and supercoil dependent manner. Nucleic Acids Res 2000, 28:2815-2822.
  • [12]Grabczyk E, Usdin K: Alleviating transcript insufficiency caused by Friedreich's ataxia triplet repeats. Nucleic Acids Res 2000, 28:4930-4937.
  • [13]Jain A, Rajeswari MR, Ahmed F: Formation and thermodynamic stability of intermolecular (R*R*Y) DNA triplex in GAA/TTC repeats associated with Freidreich's ataxia. J Biomol Struct Dyn 2002, 19:691-699.
  • [14]Mariappan SV, Catasti P, Silks LA, Bradbury EM, Gupta G: The high-resolution structure of the triplex formed by the GAA/TTC triplet repeat associated with Friedreich's ataxia. J Mol Biol 1999, 285:2035-2052.
  • [15]Potaman VN, Oussatcheva EA, Lyubchenko YL, Shlyakhtenko LS, Bidichandani SI, Ashizawa T, Sinden RR: Length-dependent structure formation in Friedreich ataxia (GAA)n*(TTC)n repeats at neutral pH. Nucleic Acids Res 2004, 32:1224-1231.
  • [16]Sakamoto N, Chastain PD, Parniewski P, Ohshima K, Pandolfo M, Griffith JD, Wells RD: Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. Mol Cell 1999, 3:465-475.
  • [17]Kohwi Y, Kohwi-Shigematsu T: Altered gene expression correlates with DNA structure. Genes Dev 1991, 5:2547-2554.
  • [18]Sakamoto N, Ohshima K, Montermini L, Pandolfo M, Wells RD: Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. J Biol Chem 2001, 276:27171-27177.
  • [19]Burnett R, Melander C, Puckett JW, Son LS, Wells RD, Dervan PB, Gottesfeld JM: DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich's ataxia. Proc Natl Acad Sci USA 2006, 103:11497-11502.
  • [20]Grabczyk E, Mancuso M, Sammarco MC: A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res 2007, 35:5351-5359.
  • [21]Bentin T, Cherny D, Larsen HJ, Nielsen PE: Transcription arrest caused by long nascent RNA chains. Biochim Biophys Acta 2005, 1727:97-105.
  • [22]Tous C, Aguilera A: Impairment of transcription elongation by R-loops in vitro. Biochem Biophys Res Commun 2007, 360:428-432.
  • [23]Roy D, Zhang Z, Lu Z, Hsieh CL, Lieber MR: Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol Cell Biol 2010, 30:146-159.
  • [24]Reddy K, Tam M, Bowater RP, Barber M, Tomlinson M, Nichol Edamura K, Wang YH, Pearson CE: Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res 2011, 39:1749-1762.
  • [25]De Biase I, Chutake YK, Rindler PM, Bidichandani SI: Epigenetic silencing in Friedreich ataxia is associated with depletion of CTCF (CCCTC-binding factor) and antisense transcription. PLoS One 2009, 4:e7914.
  • [26]Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR: R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 2003, 4:442-451.
  • [27]Ku S, Soragni E, Campau E, Thomas EA, Altun G, Laurent LC, Loring JF, Napierala M, Gottesfeld JM: Friedreich's ataxia induced pluripotent stem cells model intergenerational GAATTC triplet repeat instability. Cell Stem Cell 2010, 7:631-637.
  • [28]Bidichandani SI, Ashizawa T, Patel PI: The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 1998, 62:111-121.
  • [29]Krasilnikova MM, Kireeva ML, Petrovic V, Knijnikova N, Kashlev M, Mirkin SM: Effects of Friedreich's ataxia (GAA)n*(TTC)n repeats on RNA synthesis and stability. Nucleic Acids Res 2007, 35:1075-1084.
  • [30]Baralle M, Pastor T, Bussani E, Pagani F: Influence of Friedreich ataxia GAA noncoding repeat expansions on pre-mRNA processing. Am J Hum Genet 2008, 83:77-88.
  • [31]Krasilnikova MM, Mirkin SM: Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo. Mol Cell Biol 2004, 24:2286-2295.
  • [32]Ohshima K, Montermini L, Wells RD, Pandolfo M: Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem 1998, 273:14588-14595.
  • [33]Al-Mahdawi S, Pinto RM, Ismail O, Varshney D, Lymperi S, Sandi C, Trabzuni D, Pook M: The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 2008, 17:735-746.
  • [34]Rai M, Soragni E, Jenssen K, Burnett R, Herman D, Coppola G, Geschwind DH, Gottesfeld JM, Pandolfo M: HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS One 2008, 3:e1958.
  • [35]Soragni E, Herman D, Dent SY, Gottesfeld JM, Wells RD, Napierala M: Long intronic GAA*TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia. Nucleic Acids Res 2008, 36:6056-6065.
  • [36]Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM: Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol Cell 2009, 35:82-92.
  • [37]Klinz FJ, Gallwitz D: Size and position of intervening sequences are critical for the splicing efficiency of pre-mRNA in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 1985, 13:3791-3804.
  • [38]Oberle I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boue J, Bertheas M, Mandel J: Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 1991, 252:1097-1102.
  • [39]Bestor TH: Gene silencing. Methylation meets acetylation. Nature 1998, 393:311-312.
  • [40]Chen X, Mariappan SV, Catasti P, Ratliff R, Moyzis RK, Laayoun A, Smith SS, Bradbury EM, Gupta G: Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc Natl Acad Sci USA 1995, 92:5199-5203.
  • [41]Jones PL, Wolffe AP: Relationships between chromatin organization and DNA methylation in determining gene expression. Semin Cancer Biol 1999, 9:339-347.
  • [42]Kass SU, Pruss D, Wolffe AP: How does DNA methylation repress transcription? Trends Genet 1997, 13:444-449.
  • [43]Razin A: CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J 1998, 17:4905-4908.
  • [44]Eiges R, Urbach A, Malcov M, Frumkin T, Schwartz T, Amit A, Yaron Y, Eden A, Yanuka O, Benvenisty N, Ben-Yosef D: Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 2007, 1:568-577.
  • [45]Tabolacci E, Moscato U, Zalfa F, Bagni C, Chiurazzi P, Neri G: Epigenetic analysis reveals a euchromatic configuration in the FMR1 unmethylated full mutations. Eur J Hum Genet 2008, 16:1487-1498.
  • [46]Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ: Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 2005, 20:483-489.
  • [47]Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R: DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 2003, 422:909-913.
  • [48]Greene E, Mahishi L, Entezam A, Kumari D, Usdin K: Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 2007, 35:3383-3390.
  • [49]Castaldo I, Pinelli M, Monticelli A, Acquaviva F, Giacchetti M, Filla A, Sacchetti S, Keller S, Avvedimento VE, Chiariotti L, Cocozza S: DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich ataxia patients. J Med Genet 2008, 45:808-812.
  • [50]Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM: Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat Chem Biol 2006, 2:551-558.
  • [51]Kim E, Napierala M, Dent SY: Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich's ataxia. Nucleic Acids Res 2011, 39:8366-8377.
  • [52]Kumari D, Biacsi RE, Usdin K: Repeat expansion affects both transcription initiation and elongation in Friedreich ataxia cells. J Biol Chem 2011, 286:4209-4215.
  • [53]Kumari D, Usdin K: The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome. Hum Mol Genet 2010, 19:4634-4642.
  • [54]Grewal SI, Moazed D: Heterochromatin and epigenetic control of gene expression. Science 2003, 301:798-802.
  • [55]O'Hagan HM, Mohammad HP, Baylin SB: Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet 2008, 4:e1000155.
  • [56]Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke AJ: Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta 2004, 1677:129-141.
  • [57]Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA: ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 2010, 141:970-981.
  • [58]Buzas DM, Robertson M, Finnegan EJ, Helliwell CA: Transcription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLC. Plant J 2011, 65:872-881.
  • [59]Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007, 129:1311-1323.
  • [60]Schmitz KM, Mayer C, Postepska A, Grummt I: Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 2010, 24:2264-2269.
  • [61]Heidenfelder BL, Makhov AM, Topal MD: Hairpin formation in Friedreich's ataxia triplet repeat expansion. J Biol Chem 2003, 278:2425-2431.
  • [62]Handa V, Saha T, Usdin K: The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer. Nucleic Acids Res 2003, 31:6243-6248.
  • [63]Krol J, Fiszer A, Mykowska A, Sobczak K, de Mezer M, Krzyzosiak WJ: Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol Cell 2007, 25:575-586.
  • [64]Lorincz MC, Dickerson DR, Schmitt M, Groudine M: Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 2004, 11:1068-1075.
  • [65]Xu C, Soragni E, Chou CJ, Herman D, Plasterer HL, Rusche JR, Gottesfeld JM: Chemical probes identify a role for histone deacetylase 3 in Friedreich's ataxia gene silencing. Chem Biol 2009, 16:980-989.
  • [66]Komarnitsky P, Cho EJ, Buratowski S: Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 2000, 14:2452-2460.
  • [67]Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA: A chromatin landmark and transcription initiation at most promoters in human cells. Cell 2007, 130:77-88.
  • [68]Ng HH, Robert F, Young RA, Struhl K: Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 2003, 11:709-719.
  • [69]Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA, Baltissen MP, Stunnenberg HG, Mann M, Timmers HT: Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 2007, 131:58-69.
  • [70]Wang P, Lin C, Smith ER, Guo H, Sanderson BW, Wu M, Gogol M, Alexander T, Seidel C, Wiedemann LM, Ge K, Krumlauf R, Shilatifard A: Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol Cell Biol 2009, 29:6074-6085.
  • [71]Kubicek S, O'Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K, Kowalski JA, Homon CA, Kelly TA, Jenuwein T: Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 2007, 25:473-481.
  • [72]Link PA, Gangisetty O, James SR, Woloszynska-Read A, Tachibana M, Shinkai Y, Karpf AR: Distinct roles for histone methyltransferases G9a and GLP in cancer germ-line antigen gene regulation in human cancer cells and murine embryonic stem cells. Mol Cancer Res 2009, 7:851-862.
  • [73]Li K, Singh A, Crooks DR, Dai X, Cong Z, Pan L, Ha D, Rouault TA: Expression of human frataxin is regulated by transcription factors SRF and TFAP2. PLoS One 2010, 5:e12286.
  • [74]Chou SH, Chin KH, Wang AH: Unusual DNA duplex and hairpin motifs. Nucleic Acids Res 2003, 31:2461-2474.
  • [75]LeProust EM, Pearson CE, Sinden RR, Gao X: Unexpected formation of parallel duplex in GAA and TTC trinucleotide repeats of Friedreich's ataxia. J Mol Biol 2000, 302:1063-1080.
  • [76]Roberts RW, Crothers DM: Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 1992, 258:1463-1466.
  • [77]Zhu J, Mayeda A, Krainer AR: Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell 2001, 8:1351-1361.
  • [78]Damgaard CK, Tange TO, Kjems J: hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure. RNA 2002, 8:1401-1415.
  • [79]Zuo P, Manley JL: The human splicing factor ASF/SF2 can specifically recognize pre-mRNA 5' splice sites. Proc Natl Acad Sci USA 1994, 91:3363-3367.
  文献评价指标  
  下载次数:52次 浏览次数:21次