期刊论文详细信息
Diagnostic Pathology
CognitionMaster: an object-based image analysis framework
Frederick Klauschen1  Carsten Denkert1  Manfred Dietel1  Michael Beil2  Peter Hufnagl6  Masaru Ishii5  Albrecht Stenzinger4  Björn Lindequist6  Manato Kotani5  Daniel Heim3  Stephan Wienert3 
[1] Institute of Pathology, Charité University Hospital Berlin, Charitéplatz 1, Berlin, 10117, Germany;Department of Medicine I, University of Ulm, Albert-Einstein-Allee 23, Ulm, 89081, Germany;VMscope GmbH, Charitéplatz 1, Berlin, 10117, Germany;Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 220/221, Heidelberg, 69120, Germany;CREST, Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo, 1020075, Japan;University of Applied Sciences Berlin, Wilhelminenhofstraße 75A, Berlin, 12459, Germany
关键词: Object-based image analysis;    Image analysis;    Open source;    Software;   
Others  :  807456
DOI  :  10.1186/1746-1596-8-34
 received in 2013-01-11, accepted in 2013-02-17,  发布年份 2013
PDF
【 摘 要 】

Background

Automated image analysis methods are becoming more and more important to extract and quantify image features in microscopy-based biomedical studies and several commercial or open-source tools are available. However, most of the approaches rely on pixel-wise operations, a concept that has limitations when high-level object features and relationships between objects are studied and if user-interactivity on the object-level is desired.

Results

In this paper we present an open-source software that facilitates the analysis of content features and object relationships by using objects as basic processing unit instead of individual pixels. Our approach enables also users without programming knowledge to compose “analysis pipelines“ that exploit the object-level approach. We demonstrate the design and use of example pipelines for the immunohistochemistry-based cell proliferation quantification in breast cancer and two-photon fluorescence microscopy data about bone-osteoclast interaction, which underline the advantages of the object-based concept.

Conclusions

We introduce an open source software system that offers object-based image analysis. The object-based concept allows for a straight-forward development of object-related interactive or fully automated image analysis solutions. The presented software may therefore serve as a basis for various applications in the field of digital image analysis.

【 授权许可】

   
2013 Wienert et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708111141213.pdf 3600KB PDF download
Figure 4. 75KB Image download
Figure 3. 38KB Image download
Figure 2. 94KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Graham J, Taylor CJ: Automated chromosome analysis using the magiscan image analyser. Anal Quant Cytol 1980, 2:237-242.
  • [2]Salazar I, Cifuentes JM, Sánchez Quinteiro P, Garcia Caballero T: Structural, morphometric, and immunohistological study of the accessory olfactory bulb in the dog. Anat Rec 1994, 240:277-285.
  • [3]Portet S, Vassy J, Beil M, Millot G, Hebbache A, Rigaut JP, Schoëvaërt D: Quantitative analysis of cytokeratin network topology in the MCF7 cell line. Cytometry 1999, 35:203-213.
  • [4]Brinkmann M, Lütkemeyer D, Gudermann F, Lehmann J: New technologies for automated cell counting based on optical image analysis; The Cellscreen’. Cytotechnology 2002, 38:119-127.
  • [5]Gutiérrez R, Gómez F, Roa-Peña L, Romero E: A supervised visual model for finding regions of interest in basal cell carcinoma images. Diagn Pathol 2011, 6:26. BioMed Central Full Text
  • [6]Grimm M, Krimmel M, Alexander D, Munz A, Kluba S, Keutel C, Hoffmann J, Polligkeit J, Reinert S, Hoefert S: Prognostic value of histamine H1 receptor expression in oral squamous cell carcinoma. Clin Oral Investig 2012. Epub ahead of print
  • [7]Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Meth 2012, 9:671-675.
  • [8]Jones TR, Kang I, Wheeler DB, Lindquist RA, Papallo A, Sabatini DM, Golland P, Carpenter AE: Cell profiler analyst: data exploration and analysis software for complex image-based screens. BMC Bioinforma 2008, 9:482. BioMed Central Full Text
  • [9]Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A: Fiji: an open-source platform for biological-image analysis. Nat Meth 2012, 9:676-682.
  • [10]de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Le Montagner Y, Lagache T, Dufour A, Olivo-Marin J: Icy: an open bioimage informatics platform for extended reproducible research. Nat Meth 2012, 9:690-696.
  • [11]OpenCV. http://opencv.org webcite
  • [12]Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R: Engineering and algorithm design for an image processing Api: a technical report on ITK–the insight toolkit. Stud Health Technol Inform 2002, 85:586-592.
  • [13]Kayser K, Görtler J, Borkenfeld S, Kayser G: How to measure diagnosis-associated information in virtual slides. Diagn Pathol 2011, 6(Suppl 1):S9. BioMed Central Full Text
  • [14]Blaschke T, Strobl J: What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. GIS-Zeitschrift für Geoinformationssysteme 2001, 06:12-17.
  • [15]Hay GJ, Castilla G, Wulder MA, Ruiz JR: An automated object-based approach for the multiscale image segmentation of forest scenes. Int J Appl Earth Obs Geoinf 2005, 7:339-359.
  • [16]Baatz M, Arini N, Schäpe A, Binnig G, Linssen B: Object-oriented image analysis for high content screening: detailed quantification of cells and sub cellular structures with the cellenger software. Cytometry A 2006, 69:652-658.
  • [17]Bouzubar N, Walker KJ, Griffiths K, Ellis IO, Elston CW, Robertson JF, Blamey RW, Nicholson RI: Ki67 immunostaining in primary breast cancer: pathological and clinical associations. Br J Cancer 1989, 59:943-947.
  • [18]Gerdes J: Ki-67 and other proliferation markers useful for immunohistological diagnostic and prognostic evaluations in human malignancies. Semin Cancer Biol 1990, 1:199-206.
  • [19]Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y, Vacher J, Proia RL, Germain RN: Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 2010, 465:966.
  • [20]Klauschen F, Ishii M, Qi H, Bajénoff M, Egen JG, Germain RN, Meier-Schellersheim M: Quantifying cellular interaction dynamics in 3D fluorescence microscopy data. Nat Protoc 2009, 4:1305-1311.
  • [21]#Develop. http://www.icsharpcode.net/ webcite
  • [22]Tango. http://tango.freedesktop.org/ webcite
  • [23]Doxygen. http://doxygen.org webcite
  • [24]Velić M, May D, Moresi L: A fast robust algorithm for computing discrete voronoi diagrams. J Math Model Algor 2009, 8:343-355.
  • [25]Zerbe N, Hufnagl P, Schlüns K: Distributed computing in image analysis using open source frameworks and application to image sharpness assessment of histological whole slide images. Diagn Pathol 2011, 6:S16. BioMed Central Full Text
  • [26]Romo D, Romero E, González F: Learning regions of interest from low level maps in virtual microscopy. Diagn Pathol 2011, 6:S22. BioMed Central Full Text
  • [27]Kayser K, Görtler J, Borkenfeld S, Kayser G: Interactive and automated application of virtual microscopy. Diagn Pathol 2011, 6:S10. BioMed Central Full Text
  • [28]Wienert S, Heim D, Saeger K, Stenzinger A, Beil M, Hufnagl P, Dietel M, Denkert C, Klauschen F: Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Sci Rep 2012, 2:503.
  • [29]Ruifrok AC, Johnston DA: Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 2001, 23:291-299.
  文献评价指标  
  下载次数:39次 浏览次数:23次