期刊论文详细信息
Journal of Orthopaedic Surgery and Research
Allogeneic morphogenetic protein vs. recombinant human bone morphogenetic protein-2 in lumbar interbody fusion procedures: a radiographic and economic analysis
R Trigg McClellan3  Justin S Field2  Christopher A Yeung2  Jeffrey S Roh1 
[1] Orthopedics International, 12333 NE 130th Lane #400, Kirkland, WA 98034, USA;Desert Institute for Spine Care, 1635 E Myrtle Ave, Phoenix, AZ 85020, USA;Orthopaedic Trauma Institute, San Francisco General Hospital, UCSF, 2550 23rd Street, San Francisco, CA 94110, USA
关键词: OsteoAMP;    Fusion;    Interbody;    Protein;    Allograft;    Bone graft;    Spine;    rhBMP-2;   
Others  :  814291
DOI  :  10.1186/1749-799X-8-49
 received in 2013-09-06, accepted in 2013-12-12,  发布年份 2013
PDF
【 摘 要 】

Background

Since the introduction of rhBMP-2 (Infuse®) in 2002, surgeons have had an alternative substitute to autograft and its related donor site morbidity. Recently, the prevalence of reported adverse events and complications related to the use of rhBMP-2 has raised many ethical and legal concerns for surgeons. Additionally, the cost and decreasing reimbursement landscape of rhBMP-2 use have required identification of a viable alternative. Osteo allogeneic morphogenetic protein (OsteoAMP®) is a commercially available allograft-derived growth factor rich in osteoinductive, angiogenic, and mitogenic proteins. This study compares the radiographic fusion outcomes between rhBMP-2 and OsteoAMP allogeneic morphogenetic protein in lumbar interbody fusion spine procedures.

Methods

Three hundred twenty-one (321) patients from three centers underwent a transforaminal lumbar interbody fusion (TLIF) or lateral lumbar interbody fusion (LLIF) procedure and were assessed by an independent radiologist for fusion and radiographically evident complications. The independent radiologist was blinded to the intervention, product, and surgeon information. Two hundred and twenty-six (226) patients received OsteoAMP with autologous local bone, while ninety-five (95) patients received Infuse with autologous local bone. Patients underwent radiographs (x-ray and/or CT) at standard postoperative follow-up intervals of approximately 1, 3, 6, 12, and 18 months. Fusion was defined as radiographic evidence of bridging across endplates, or bridging from endplates to interspace disc plugs. Osteobiologic surgical supply costs were also analyzed to ascertain cost differences between OsteoAMP and rhBMP-2.

Results

OsteoAMP produced higher rates of fusion at 6, 12, and 18 months (p ≤ 0.01). The time required for OsteoAMP to achieve fusion was approximately 40% less than rhBMP-2 with approximately 70% fewer complications. Osteobiologic supply costs were 80.5% lower for OsteoAMP patients (73.7% lower per level) than for rhBMP-2.

Conclusions

Results of this study indicate that OsteoAMP is a viable alternative to rhBMP-2 both clinically and economically when used in TLIF and LLIF spine procedures.

【 授权许可】

   
2013 Roh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710031607345.pdf 680KB PDF download
Figure 4. 61KB Image download
Figure 3. 63KB Image download
Figure 2. 58KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Agarwal R, Williams K, Umscheid CA, Welch WC: Osteoinductive bone graft substitutes for lumbar fusion: a systematic review. J Neurosurg Spine 2009, 11:729-740.
  • [2]Urist MR: Bone: formation by autoinduction. Science 1965, 150:893-899. doi:10.1126/science.150.3698.893
  • [3]Valdes MA, Thakur NA, Namdari S, Ciombor DM, Palumbo M: Recombinant bone morphogenic protein-2 in orthopaedic surgery: a review. Arch Orthop Trauma Surg 2009, 129:1651-1657.
  • [4]Fu R, Selph S, McDonagh M, Peterson K, Tiwari A, Chou R, Helfand M: Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med 2013, 158:12.
  • [5]Carragee EJ, Mitsunaga KA, Hurwitz EL, Scuderi GJ: Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study. Spine J 2012, 12(10):881-890. doi: 10.1016/j.spinee.2012.09.040
  • [6]Carragee EJ, Hurwitz EL, Weiner BK: A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 2011, 11(6):471-491. doi:10.1016/j.spinee.2011.04.023
  • [7]U.S. Food and Drug Administration: Recombinant human bone morphogenetic protein in cervical spine fusion. Silver Spring, MD: U.S. Food and Drug Administration; 2008. [http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm079019.htm webcite]
  • [8]Fu R, Selph S, McDonagh M, Peterson K, Tiwari A, Chou R, Helfand M: Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion. Ann Intern Med 2013, 158:12.
  • [9]Kaigler D, Krebsbach PH, Polverini PJ, Mooney DJ: Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng 2011, 9:1.
  • [10]Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM: The biology of bone grafting. J Am Acad Orthop Surg 2005, 13:1.
  • [11]Brunner G, Nguyen H, Gabrilove J, Rifkin DB, Wilson EL: Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells. Blood J 1993, 81:631-638.
  • [12]Selby MD, Clark SR, Hall DJ, Freeman BJ: Radiologic assessment of spinal fusion. J Am Acad Orthop Surg 2012, 20(11):694-703. doi:10.5435/JAAOS-20-11-694
  • [13]Fogel GR, Toohey JS, Neidre A, Brantigan JW: Fusion assessment of posterior lumbar interbody fusion using radiolucent cages: x-ray films and helical computed tomography scans compared with surgical exploration of fusion. Spine J 2008, 8(4):570-577.
  • [14]Boden SD: Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 2002, 27(16 Suppl 1):S26-S31.
  • [15]DePalma AF, Rothman RH: The nature of pseudarthrosis. Clin Orthop 1968, 59:113-118.
  • [16]Steinmann JC, Herkowitz HN: Pseudarthrosis of the spine. Clin Orthop 1992, 284:80-90.
  • [17]Fischgrund JS, Mackay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT: 1997 Volvo Award winner in clinical studies. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine 1997, 22:2807-2812.
  • [18]Glassman SD, Dimar JR, Carreon LY, Campbell MJ, Puno RM, Johnson JR: Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. Spine 2005, 30:1694-1698.
  • [19]Bridwell KH, Sedgewick TA, O'Brien MF, Lenke LG, Baldus C: The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis. J Spinal Disord 1993, 6:461-472.
  • [20]Rodríguez-Vela J, Lobo-Escolar A, Joven E, Muñoz-Marín J, Herrera A, Velilla J: Clinical outcomes of minimally invasive versus open approach for one-level transforaminal lumbar interbody fusion at the 3- to 4-year follow-up. Eur Spine J 2013, 22:2857-2863.
  • [21]Boden SD, Schimandle JH: Biologic enhancement of spinal fusion. Spine 1995, 20:113S-123S.
  • [22]Dimar JR II, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY: Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am 2009, 91:1377-1386.
  • [23]Burkus JK, Gornet MF, Dickman CA, Zdeblick TA: Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 2002, 15(5):337-349.
  • [24]Boden SD, Zdeblick TA, Sandhu HS, Heim SE: The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 2000, 25(3):376-381.
  • [25]Dorward IG, Buchowski JM, Stoker GE, Zebala LP: Posterior cervical fusion with recombinant human bone morphogenetic protein-2: complications and fusion rate at minimum two-year follow-up. J Spinal Disord Tech 2013. in press
  • [26]Neman J, Duenas V, Kowolik CM, Hambrecht AC, Chen MY, Jandial R: Lineage mapping and characterization of the native progenitor population in cellular allograft. Spine J 2013, 13(2):162-174.
  • [27]Kerr EJ 3rd, Jawahar A, Wooten T, Kay S, Cavanaugh DA, Nunley PD: The use of osteo-conductive stem-cells allograft in lumbar interbody fusion procedures: an alternative to recombinant human bone morphogenetic protein. J Surg Orthop Adv 2011, 20(3):193-197.
  • [28]Thompson N, et al.: Osteoinductivity and osteoconductivity comparison of commonly used granule products. In Proceedings of the 7th Symposium on Biologic Scaffolds for Regenerative Medicine: April 26–28 2012. Napa Valley;
  • [29]Hadjidakis DJ, Androulakis II: Bone remodeling. Ann N Y Acad Sci 2006, 1092:385-396.
  • [30]Clarkin CE, Gerstenfeld LC: VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Funct 2013, 31(1):1-11. doi:10.1002/cbf.2911
  • [31]Centers for Disease Control and Prevention: Frequently asked questions. 2013. [http://www.cdc.gov/oralhealth/infectioncontrol/faq/allografts.htm webcite]
  • [32]Shoshani D, Markovitz E, Cohen Y, Heremans A, Goldlust A: Skin test hypersensitivity study of a cross-linked, porcine collagen implant for aesthetic surgery. Dermatol Surg 2007, 33(Suppl 2):S152-8.
  • [33]Keefe J, Wauk L, Chu S, DeLustro F: Clinical use of injectable bovine collagen: a decade of experience. Clin Mater 1992, 9(3–4):155-62.
  • [34]Buck BE, Malinin T, Brown MD: Bone transplantation and human immunodeficiency virus. Clin Orthop 1994, 303:8-17.
  • [35]Bethesda MD, Simmonds RJ, Holmberg SD, Hurwitz RL, Coleman TR, Bottenfield S, Conley LJ, Kohlenberg SH, Castro KG, Dahan BA, Schable CA, Rayfield MA, Rogers MF: Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med 1992, 326:726-732.
  文献评价指标  
  下载次数:23次 浏览次数:15次