期刊论文详细信息
Cancer Cell International
Inhibiting CCN1 blocks AML cell growth by disrupting the MEK/ERK pathway
Wei-Ke Si1  Chen Zhao1  Jing Pan1  Xiao-Li Zhang1  Zhong Yang1  Chen Zhao2  Chang-Chun Niu3 
[1] Department of Clinical Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;The First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China;Department of Clinical Laboratory, The Third People’s Hospital of Chongqing, Chongqing 400014, China
关键词: ERK;    AML;    CCN1;   
Others  :  1121672
DOI  :  10.1186/s12935-014-0074-z
 received in 2014-02-26, accepted in 2014-07-21,  发布年份 2014
PDF
【 摘 要 】

Background

CCN1 plays distinct roles in various tumor types, but little is known regarding the role of CCN1 in leukemia.

Methods

We analyzed CCN1 protein expression in leukemia cell lines and in AML bone marrow samples. We also evaluated the effects of antibody- or siRNA-mediated inhibition of CCN1 on the growth of two AML cell lines (U937 and Kasumi-1 cells) and on the MEK/ERK pathway, β-catenin and other related genes.

Results

U937 and Kasumi-1 cells had markedly higher CCN1 expression than the 5 other leukemia cell lines, and CCN1 protein expression was higher in the AML bone marrow samples than in the normal bone marrow samples. Blocking CCN1 with an antibody in U937 and Kasumi-1 cells suppressed proliferation, increased apoptosis, down-regulated Bcl-xL and c-Myc expression, up-regulated Bax expression, and had no effect on Survivin. siRNA-mediated down-regulation of CCN1 inhibited the proliferation and colony formation of U937 and Kasumi-1 cells and increased cytarabine-induced apoptosis. Furthermore, CCN1 siRNA reduced MEK and ERK phosphorylation without affecting β-catenin; the CCN1 antibody similarly affected MEK and ERK phosphorylation. These changes in phosphorylation could influence the expression of Bcl-xL, c-Myc and Bax in AML cells.

Conclusions

The data suggested that CCN1 is a tumor promoter in AML that acts through the MEK/ERK pathway to up-regulate c-Myc and Bcl-xL and to down-regulate Bax.

【 授权许可】

   
2014 Niu et al.; licensee Springer

【 预 览 】
附件列表
Files Size Format View
20150212050413779.pdf 1010KB PDF download
Figure 4. 42KB Image download
Figure 3. 40KB Image download
Figure 2. 65KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Dhar A, Ray A: The CCN family proteins in carcinogenesis. Exp Oncol 2010, 32(1):2-9.
  • [2]Lau LF: CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci 2011, 68(19):3149-3163.
  • [3]Tsai MS, Bogart DF, Castaneda JM, Li P, Lupu R: Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene 2002, 21(53):8178-8185.
  • [4]Sun ZJ, Wang Y, Cai Z, Chen PP, Tong XJ, Xie D: Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells. Br J Cancer 2008, 99(10):1656-1667.
  • [5]Lin BR, Chang CC, Chen LR, Wu MH, Wang MY, Kuo IH, Chu CY, Chang KJ, Lee PH, Chen WJ, Kuo ML, Lin MT: Cysteine-rich 61 (CCN1) enhances chemotactic migration, transendothelial cell migration, and intravasation by concomitantly up-regulating chemokine receptor 1 and 2. Mol Cancer Res 2007, 5(11):1111-1123.
  • [6]Xie D, Yin D, Tong X, O′Kelly J, Mori A, Miller C, Black K, Gui D, Said JW, Koeffler HP: Cyr61 is overexpressed in gliomas and involved in integrin-linked kinase-mediated Akt and beta-catenin-TCF/Lef signaling pathways. Cancer Res 2004, 64(6):1987-1996.
  • [7]Xie JJ, Xu LY, Xie YM, Du ZP, Feng CH, Dong H, Li EM: Involvement of Cyr61 in the growth, invasiveness and adhesion of esophageal squamous cell carcinoma cells. Int J Mol Med 2011, 27(3):429-434.
  • [8]Tan TW, Yang WH, Lin YT, Hsu SF, Li TM, Kao ST, Chen WC, Fong YC, Tang CH: Cyr61 increases migration and MMP-13 expression via alphavbeta3 integrin, FAK, ERK and AP-1-dependent pathway in human chondrosarcoma cells. Carcinogenesis 2009, 30(2):258-268.
  • [9]Tong X, Xie D, O′Kelly J, Miller CW, Muller-Tidow C, Koeffler HP: Cyr61, a member of CCN family, is a tumor suppressor in non-small cell lung cancer. J Biol Chem 2001, 276(50):47709-47714.
  • [10]Chien W, Kumagai T, Miller CW, Desmond JC, Frank JM, Said JW, Koeffler HP: Cyr61 suppresses growth of human endometrial cancer cells. J Biol Chem 2004, 279(51):53087-53096.
  • [11]Dobroff AS, Wang H, Melnikova VO, Villares GJ, Zigler M, Huang L, Bar-Eli M: Silencing cAMP-response element-binding protein (CREB) identifies CYR61 as a tumor suppressor gene in melanoma. J Biol Chem 2009, 284(38):26194-26206.
  • [12]Feng P, Wang B, Ren EC: Cyr61/CCN1 is a tumor suppressor in human hepatocellular carcinoma and involved in DNA damage response. Int J Biochem Cell Biol 2008, 40(1):98-109.
  • [13]Li ZQ, Ding W, Sun SJ, Li J, Pan J, Zhao C, Wu WR, Si WK: Cyr61/CCN1 is regulated by Wnt/beta-catenin signaling and plays an important role in the progression of hepatocellular carcinoma. PLoS One 2012, 7(4):e35754.
  • [14]Ge X, Wang X: Role of Wnt canonical pathway in hematological malignancies. J Hematol Oncol 2010, 3:33. BioMed Central Full Text
  • [15]Scholl C, Gilliland DG, Frohling S: Deregulation of signaling pathways in acute myeloid leukemia. Semin Oncol 2008, 35(4):336-345.
  • [16]Ricciardi MR, McQueen T, Chism D, Milella M, Estey E, Kaldjian E, Sebolt-Leopold J, Konopleva M, Andreeff M: Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 2005, 19(9):1543-1549.
  • [17]Kim SC, Hahn JS, Min YH, Yoo NC, Ko YW, Lee WJ: Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood 1999, 93(11):3893-3899.
  • [18]Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M, Estey EH, Andreeff M: Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 2006, 108(7):2358-2365.
  • [19]Lunghi P, Tabilio A, Dall′Aglio PP, Ridolo E, Carlo-Stella C, Pelicci PG, Bonati A: Downmodulation of ERK activity inhibits the proliferation and induces the apoptosis of primary acute myelogenous leukemia blasts. Leukemia 2003, 17(9):1783-1793.
  • [20]Ricciardi MR, Scerpa MC, Bergamo P, Ciuffreda L, Petrucci MT, Chiaretti S, Tavolaro S, Mascolo MG, Abrams SL, Steelman LS, Tsao T, Marchetti A, Konopleva M, Del Bufalo D, Cognetti F, Foa R, Andreeff M, McCubrey JA, Tafuri A, Milella M: Therapeutic potential of MEK inhibition in acute myelogenous leukemia: rationale for “vertical” and “lateral” combination strategies. J Mol Med (Berl) 2012, 90(10):1133-1144.
  • [21]Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D, Konopleva M, Zhao S, Estey E, Andreeff M: Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 2001, 108(6):851-859.
  • [22]Planque N, Perbal B: A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis. Cancer Cell Int 2003, 3(1):15. BioMed Central Full Text
  • [23]Lowenberg B: Sense and nonsense of high-dose cytarabine for acute myeloid leukemia. Blood 2013, 121(1):26-28.
  • [24]Chai J, Modak C, Ouyang Y, Wu SY, Jamal MM: CCN1 Induces beta-Catenin Translocation in Esophageal Squamous Cell Carcinoma through Integrin alpha11. ISRN Gastroenterol 2012, 2012:207235.
  • [25]Tong X, O’Kelly J, Xie D, Mori A, Lemp N, McKenna R, Miller CW, Koeffler HP: Cyr61 suppresses the growth of non-small-cell lung cancer cells via the beta-catenin-c-myc-p53 pathway. Oncogene 2004, 23(28):4847-4855.
  • [26]Gery S, Xie D, Yin D, Gabra H, Miller C, Wang H, Scott D, Yi WS, Popoviciu ML, Said JW, Koeffler HP: Ovarian carcinomas: CCN genes are aberrantly expressed and CCN1 promotes proliferation of these cells. Clin Cancer Res 2005, 11(20):7243-7254.
  • [27]Su JL, Chiou J, Tang CH, Zhao M, Tsai CH, Chen PS, Chang YW, Chien MH, Peng CY, Hsiao M, Kuo ML, Yen ML: CYR61 regulates BMP-2-dependent osteoblast differentiation through the {alpha}v{beta}3 integrin/integrin-linked kinase/ERK pathway. J Biol Chem 2010, 285(41):31325-31336.
  • [28]Juric V, Chen CC, Lau LF: Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol Cell Biol 2009, 29(12):3266-3279.
  • [29]Franzen CA, Chen CC, Todorovic V, Juric V, Monzon RI, Lau LF: Matrix protein CCN1 is critical for prostate carcinoma cell proliferation and TRAIL-induced apoptosis. Mol Cancer Res 2009, 7(7):1045-1055.
  • [30]Todorovic V, Chen CC, Hay N, Lau LF: The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts. J Cell Biol 2005, 171(3):559-568.
  • [31]Lin MT, Chang CC, Chen ST, Chang HL, Su JL, Chau YP, Kuo ML: Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation. J Biol Chem 2004, 279(23):24015-24023.
  • [32]Menendez JA, Vellon L, Mehmi I, Teng PK, Griggs DW, Lupu R: A novel CYR61-triggered ‘CYR61-alphavbeta3 integrin loop’ regulates breast cancer cell survival and chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway. Oncogene 2005, 24(5):761-779.
  • [33]Rho SB, Woo JS, Chun T, Park SY: Cysteine-rich 61 (CYR61) inhibits cisplatin-induced apoptosis in ovarian carcinoma cells. Biotechnol Lett 2009, 31(1):23-28.
  • [34]Lee KB, Byun HJ, Park SH, Park CY, Lee SH, Rho SB: CYR61 controls p53 and NF-kappaB expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells. Cancer Lett 2012, 315(1):86-95.
  • [35]Court EL, Smith MA, Avent ND, Hancock JT, Morgan LM, Gray AG, Smith JG: DNA microarray screening of differential gene expression in bone marrow samples from AML, non-AML patients and AML cell lines. Leuk Res 2004, 28(7):743-753.
  • [36]Hoffman B, Amanullah A, Shafarenko M, Liebermann DA: The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene 2002, 21(21):3414-3421.
  • [37]Luo H, Li Q, O’Neal J, Kreisel F, Le Beau MM, Tomasson MH: c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood 2005, 106(7):2452-2461.
  • [38]Tzifi F, Economopoulou C, Gourgiotis D, Ardavanis A, Papageorgiou S, Scorilas A: The role of BCL2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv Hematol 2012, 2012:524308.
  • [39]Rodel F, Sprenger T, Kaina B, Liersch T, Rodel C, Fulda S, Hehlgans S: Survivin as a prognostic/predictive marker and molecular target in cancer therapy. Curr Med Chem 2012, 19(22):3679-3688.
  • [40]Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA: The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010, 327(5973):1650-1653.
  • [41]Chung EJ, Hwang SG, Nguyen P, Lee S, Kim JS, Kim JW, Henkart PA, Bottaro DP, Soon L, Bonvini P, Lee SJ, Karp JE, Oh HJ, Rubin JS, Trepel JB: Regulation of leukemic cell adhesion, proliferation, and survival by beta-catenin. Blood 2002, 100(3):982-990.
  • [42]Simon M, Grandage VL, Linch DC, Khwaja A: Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene 2005, 24(14):2410-2420.
  • [43]Gandillet A, Park S, Lassailly F, Griessinger E, Vargaftig J, Filby A, Lister TA, Bonnet D: Heterogeneous sensitivity of human acute myeloid leukemia to beta-catenin down-modulation. Leukemia 2011, 25(5):770-780.
  • [44]Siapati EK, Papadaki M, Kozaou Z, Rouka E, Michali E, Savvidou I, Gogos D, Kyriakou D, Anagnostopoulos NI, Vassilopoulos G: Proliferation and bone marrow engraftment of AML blasts is dependent on beta-catenin signalling. Br J Haematol 2011, 152(2):164-174.
  • [45]Zhang T, Otevrel T, Gao Z, Ehrlich SM, Fields JZ, Boman BM: Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 2001, 61(24):8664-8667.
  • [46]Wu J, Wong WW, Khosravi F, Minden MD, Penn LZ: Blocking the Raf/MEK/ERK pathway sensitizes acute myelogenous leukemia cells to lovastatin-induced apoptosis. Cancer Res 2004, 64(18):6461-6468.
  • [47]Konopleva M, Milella M, Ruvolo P, Watts JC, Ricciardi MR, Korchin B, McQueen T, Bornmann W, Tsao T, Bergamo P, Mak DH, Chen W, McCubrey J, Tafuri A, Andreeff M: MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia 2012, 26(4):778-787.
  • [48]Zhang W, Konopleva M, Burks JK, Dywer KC, Schober WD, Yang JY, McQueen TJ, Hung MC, Andreeff M: Blockade of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and murine double minute synergistically induces Apoptosis in acute myeloid leukemia via BH3-only proteins Puma and Bim. Cancer Res 2010, 70(6):2424-2434.
  • [49]Nishioka C, Ikezoe T, Yang J, Takeshita A, Taniguchi A, Komatsu N, Togitani K, Koeffler HP, Yokoyama A: Blockade of MEK/ERK signaling enhances sunitinib-induced growth inhibition and apoptosis of leukemia cells possessing activating mutations of the FLT3 gene. Leuk Res 2008, 32(6):865-872.
  • [50]Hampson P, Wang K, Milverton L, Ersvaer E, Bruserud O, Lord JM: Kinetics of ERK1/2 activation determine sensitivity of acute myeloid leukaemia cells to the induction of apoptosis by the novel small molecule ingenol 3-angelate (PEP005). Apoptosis 2010, 15(8):946-955.
  • [51]Nishioka C, Ikezoe T, Yang J, Yokoyama A: Inhibition of MEK signaling enhances the ability of cytarabine to induce growth arrest and apoptosis of acute myelogenous leukemia cells. Apoptosis 2009, 14(9):1108-1120.
  文献评价指标  
  下载次数:0次 浏览次数:2次