期刊论文详细信息
EvoDevo
Transcriptional heterochrony in talpid mole autopods
Marcelo R Sánchez-Villagra3  Merijn AG de Bakker1  Rafael Jiménez4  Michael K Richardson1  Christian Mitgutsch2  Constanze Bickelmann3 
[1] Institute of Biology, University of Leiden, Sylviusweg 72, Leiden, BE 2333, The Netherlands;RIKEN Center for Developmental Biology, Laboratory for Evolutionary Morphology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan;Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, Zürich 8006, Switzerland;Departamento de Genética, Universidad de Granada, Avenida del Conocimiento, Granada, Armilla 18100, Spain
关键词: Talpidae;    Developmental penetrance;    SOX9 expression;   
Others  :  807534
DOI  :  10.1186/2041-9139-3-16
 received in 2012-05-24, accepted in 2012-07-04,  发布年份 2012
PDF
【 摘 要 】

Background

Talpid moles show many specializations in their adult skeleton linked to fossoriality, including enlarged hands when compared to the feet. Heterochrony in developmental mechanisms is hypothesized to account for morphological evolution in skeletal elements.

Methods

The temporal and spatial distribution of SOX9 expression, which is an early marker of chondrification, is analyzed in autopods of the fossorial Iberian mole Talpa occidentalis, as well as in shrew (Cryptotis parva) and mouse (Mus musculus) for comparison.

Results and discussion

SOX9 expression is advanced in the forelimb compared to the hind limb in the talpid mole. In contrast, in the shrew and the mouse, which do not show fossorial specializations in their autopods, it is synchronous. We provide evidence that transcriptional heterochrony affects the development of talpid autopods, an example of developmental penetrance. We discuss our data in the light of earlier reported pattern heterochrony and later morphological variation in talpid limbs.

Conclusion

Transcriptional heterochrony in SOX9 expression is found in talpid autopods, which is likely to account for pattern heterochrony in chondral limb development as well as size variation in adult fore- and hind limbs.

【 授权许可】

   
2012 Bickelmann et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708112446646.pdf 1380KB PDF download
Figure 2. 81KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Asher RJ, Helgen KM: Nomenclature and placental mammal phylogeny. BMC Evol Biol 2010, 10:102.
  • [2]Slonaker JR: Some morphological changes for adaptation in the mole. J Morphol 1920, 34:335-365.
  • [3]Sánchez-Villagra MR, Menke PR: The mole’s thumb - evolution of the hand skeleton in talpids (Mammalia). Zoology 2005, 108:3-12.
  • [4]Mitgutsch C, Richardson MK, Jiménez R, Martin JE, Kondrashov P, de Bakker MAG, Sánchez-Villagra MR: Circumventing the polydactyly ‘constraint’: the mole’s thumb. Biol Letters 2012, 8:74-77.
  • [5]Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MA, Murphy WJ: Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 2011, 334:521-524.
  • [6]Mitgutsch C, Richardson MK, de Bakker MAG, Jiménez R, Martín JE, Kondrashov P, Sánchez-Villagra MR: From Clone to Bone: the Synergy of Morphological and Molecular Tools in Palaeobiology. In A molecular-morphological study of a peculiar limb morphology: the development and evolution of the mole’s ‘thumb’. Edited by Asher RJ, Müller J. Cambridge University Press, ; . In press
  • [7]Klingenberg CP: There’s something afoot in the evolution of ontogenesis. BMC Evol Biol 2010, 10:221.
  • [8]Adams DC, Nistri A: Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae). BMC Evol Biol 2010, 10:1-10.
  • [9]Richardson MK, Gobes SMH, van Leuwen AC, Polman JAE, Pieau C, Sánchez-Villagra MR: Heterochrony in limb evolution: developmental mechanisms and natural selection. J ExpZool 2009, 312B:639-664.
  • [10]Sears KE: Differences in the timing of prechrondrogenic limb development in mammals: the marsupial-placental dichotomy resolved. Evolution 2009, 63:2193-2200.
  • [11]Hugi J, Hutchinsin MN, Sánchez-Villagra MR: Heterochronic shifts in the ossification sequences of surface and subsurface-dwelling skinks are correlated with the degree of limb reduction. Zoology 2012, 115:188-198.
  • [12]Bininda-Emonds ORP, Jeffery JE, Sánchez-Villagra MS, Hanken J, Colbert M, Pieau C, Selwood L, ten Cate C, Raynaud A, Osabutey CK, Richardson MK: Forelimb-hindlimb developmental timing changes across tetrapod phylogeny. BMC Evol Biol 2007, 7:182.
  • [13]Weisbecker V, Goswami A, Wroe S, Sánchez-Villagra MR: Ossification heterochrony in the therian postcranial skeleton and the marsupial-placental dichotomy. Evolution 2008, 62:2027-2041.
  • [14]Richardson MK: Vertebrate evolution: the developmental origins of adult variation. BioEssays 1999, 21:604-613.
  • [15]Fröbisch NB: Ossification patterns in the tetrapod limb - conservation and divergence from morphogenetic events. Biol Rev 2008, 83:571-600.
  • [16]Smith KK: Sequence heterochrony and the Evolution of Development. J Morphol 2002, 252:82-97.
  • [17]Weisbecker V: Monotreme ossification sequences and the riddle of mammalian skeletal development. Evolution 2011, 65:1323-1335.
  • [18]Blanco MJ, Misof BY, Wagner GP: Heterochronic differences of Hoxa-11expression in Xenopusfore- and hind limb development: evidence for lower limb identity of the anuran ankle bones. Dev Genes Evol 1998, 208:175-187.
  • [19]Mackem S, Mahon KA: Ghox-7: a chick homeobox gene expressed primarily in the limb buds with limb-type differences in expression. Development 1991, 113:791-806.
  • [20]Kamiyama N, Seki R, Yokoyama H, Tamura K: Heterochronically early decline of Hoxexpression prior to cartilage formation in the avian hindlimb zeugopod. Dev Growth Differ 2012, 54:619-632.
  • [21]Smith KK: Craniofacial development in marsupial mammals: developmental origins of evolutionary change. Dev Dyn 2006, 235:1181-1193.
  • [22]Sánchez-Villagra MR, Goswami A, Weisbecker V, Mock O, Kuratani S: Conserved relative timing of cranial ossification patterns in early mammalian evolution. Evol Dev 2008, 10:519-530.
  • [23]Jernvall J, Thesleff I: Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 2000, 92:19-29.
  • [24]Kassai Y, Munne P, Hotta Y, Penttilä E, Kavanagh K, Ohbayashi N, Takada S, Thesleff I, Jernvall J, Itoh N: Regulation of Mammalian tooth cusp patterning by ectodin. Science 2005, 309:2067-2070.
  • [25]Harjunmaa E, Kallonen A, Voutilainen M, Hämäläinen K, Mikkola ML, Jernvall J: On the difficulty of increasing dental complexity. Nature 2012, 483:324-327.
  • [26]Chipman AD, Haas A, Tchernov E, Khaner O: Variation in anuran embryogenesis: differences in sequence and timing of early developmental events. J Exp Zool 2000, 288:352-365.
  • [27]Mitgutsch C, Olsson L, Haas A: Early embryogenesis in discoglossoid frogs: a study of heterochrony at different taxonomic levels. J Zool Syst Evol Res 2009, 47:248-257.
  • [28]Weisbecker V, Mitgutsch C: A large-scale survey of heterochrony in anuran cranial ossification patterns. J Zool Syst Evol Res 2010, 48:332-347.
  • [29]Werneburg I, Sánchez-Villagra MR: The early development of the Echidna, Tachyglossus aculeatus(Mammalia: Monotremata) and the Grundmuster of mammalian development. Acta Zool-Stockholm 2011, 92:75-88.
  • [30]Chimal-Monroy J, Rodriquez-Leon J, Montero JA, Ganan Y, Macias D, Merino R, Hurle JM: Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Soxgenes and BMP signaling. Dev Biol 2003, 257:292-301.
  • [31]Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B: SOX9is required for cartilage formation. Nat Genet 1999, 22:85-89.
  • [32]Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B: The transcription factor SOX9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Gene Dev 2002, 16:2813-2828.
  • [33]Lorda-Diez CI, Montero JA, Diaz-Mendoza MJ, Garcia-Porrero JA, Hurle JM: Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb. PLoS One 2011, 6:e24546.
  • [34]Welten MCM, Verbeek FJ, Meijer AH, Richardson MK: Gene expression and digit homology in the chicken embryo wing. Evol Dev 2005, 7:18-28.
  • [35]Sears KE: Novel insights into the regulation of limb development from ‘natural’ mammalian mutants. BioEssays 2011, 33:327-331.
  文献评价指标  
  下载次数:105次 浏览次数:145次