| Journal of Translational Medicine | |
| The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-α production | |
| Maria Pia Pistillo2  Alessandro Poggi4  Guido Ferlazzo8  Maria Cristina Mingari6  Lung-Ji Chang1,10  Francesca Tosetti4  Nicoletta Ferrari4  Paolo Carrega9  Gabriella Pietra6  Vincenzo Fontana5  Anna Morabito2  Simona Minghelli9  Simona Boccardo1  Patrizia Piccioli3  Sandra Salvi1  Silvia Boero4  Paola Queirolo3  Stefania Laurent7  | |
| [1] Department of Pathology, IRCCS AOU San Martino-IST, Genoa, Italy;Unit of Tumor Genetics and Epigenetics, IRCCS AOU San Martino-IST, Genoa, Italy;Department of Medical Oncology A, IRCCS AOU San Martino-IST, Genoa, Italy;Unit of Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy;Unit of Epidemiology and Biostatistics, IRCCS AOU San Martino-IST, Genoa, Italy;Department of Experimental Medicine, University of Genoa, Genoa, Italy;Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy;Department of Human Pathology, School of Medicine, University of Messina, Messina, Italy;G. Gaslini Institute, Genoa, Italy;Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA | |
| 关键词: NK/γδ T cell activation; ADCC; Ipilimumab; Melanoma; CTLA-4; | |
| Others : 827613 DOI : 10.1186/1479-5876-11-108 |
|
| received in 2012-12-19, accepted in 2013-04-23, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
CTLA-4 (Cytotoxic T lymphocyte antigen-4) is traditionally known as a negative regulator of T cell activation. The blocking of CTLA-4 using human monoclonal antibodies, such as Ipilimumab, is currently used to relieve CTLA-4-mediated inhibition of anti-tumor immune response in metastatic melanoma. Herein, we have analyzed CTLA-4 expression and Ipilimumab reactivity on melanoma cell lines and tumor tissues from cutaneous melanoma patients. Then, we investigated whether Ipilimumab can trigger innate immunity in terms of antibody dependent cellular cytotoxicity (ADCC) or Tumor Necrosis Factor (TNF)-α release. Finally, a xenograft murine model was set up to determine in vivo the effects of Ipilimumab and NK cells on melanoma.
Methods
CTLA-4 expression and Ipilimumab reactivity were analyzed on 17 melanoma cell lines (14 primary and 3 long-term cell lines) by cytofluorimetry and on 33 melanoma tissues by immunohistochemistry. CTLA-4 transcripts were analyzed by quantitative RT-PCR. Soluble CTLA-4 and TNF-α were tested by ELISA. Peripheral blood mononuclear cells (PBMC), NK and γδT cells were tested in ADCC assay with Ipilimumab and melanoma cell lines. TNF-α release was analyzed in NK-melanoma cell co-cultures in the presence of ipilimumab. In vivo experiments of xenotransplantation were carried out in NOD/SCID mice. Results were analyzed using unpaired Student’s t-test.
Results
All melanoma cell lines expressed mRNA and cytoplasmic CTLA-4 but surface reactivity with Ipilimumab was quite heterogeneous. Accordingly, about 2/3 of melanoma specimens expressed CTLA-4 at different level of intensity.
Ipilimumab triggered, via FcγReceptorIIIA (CD16), ex vivo NK cells as well as PBMC, IL-2 activated NK and γδT cells to ADCC of CTLA-4+ melanoma cells. No ADCC was detected upon interaction with CTLA-4- FO-1 melanoma cell line. TNF-α was released upon interaction of NK cells with CTLA-4+ melanoma cell lines. Remarkably, Ipilimumab neither affected proliferation and viability nor triggered ADCC of CTLA-4+ T lymphocytes. In a chimeric murine xenograft model, the co-engraftment of Ipilimumab-treated melanoma cells with human allogeneic NK cells delayed and significantly reduced tumor growth, as compared to mice receiving control xenografts.
Conclusions
Our studies demonstrate that Ipilimumab triggers effector lymphocytes to cytotoxicity and TNF-α release. These findings suggest that Ipilimumab, besides blocking CTLA-4, can directly activate the elimination of CTLA-4+ melanomas.
【 授权许可】
2013 Laurent et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140713165537227.pdf | 1849KB | ||
| Figure 6. | 27KB | Image | |
| Figure 5. | 67KB | Image | |
| Figure 4. | 74KB | Image | |
| Figure 3. | 86KB | Image | |
| Figure 2. | 77KB | Image | |
| Figure 1. | 67KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Krummel MF, Allison JP: CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996, 183:2533-2540.
- [2]Brunner MC, Chambers CA, Chan FK, Hanke J, Winoto A, Allison JP: CTLA-4-Mediated inhibition of early events of T cell proliferation. J Immunol 1999, 162:5813-5813.
- [3]Teft WA, Kirchhof MG, Madrenas J: A molecular perspective of CTLA-4 function. Annu Rev Immunol 2006, 24:65-97.
- [4]Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH: Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001, 193:1285-1294.
- [5]Wang XB, Giscombe R, Yan Z, Heiden T, Xu D, Lefvert AK: Expression of CTLA-4 by human monocytes. Scand J Immunol 2002, 55:53-60.
- [6]Kaufman KA, Bowen JA, Tsai AF, Bluestone JA, Hunt JS, Ober C: The CTLA-4 gene is expressed in placental fibroblasts. Mol Hum Reprod 1999, 5:84-87.
- [7]Nagaraju K, Raben N, Villalba ML, Danning C, Loeffler LA, Lee E, Tresser N, Abati A, Fetsch P, Plotz PH: Costimulatory markers in muscle of patients with idiopathic inflammatory myopathies and in cultured muscle cells. Clin Immunol 1999, 92:161-169.
- [8]Laurent S, Carrega P, Saverino D, Piccioli P, Camoriano M, Morabito A, Dozin B, Fontana V, Simone R, Mortara L, Mingari MC, Ferlazzo G, Pistillo MP: CTLA-4 is expressed by human monocyte-derived dendritic cells and regulates their functions. Hum Immunol 2010, 71:934-941.
- [9]Pistillo MP, Tazzari PL, Palmisano GL, Pierri I, Bolognesi A, Ferlito F, Capanni P, Polito L, Ratta M, Pileri S, Piccioli M, Basso G, Rissotto L, Conte R, Gobbi M, Stirpe F, Ferrara GB: CTLA-4 is not restricted to the lymphoid cell lineage and can function as a target molecule for apoptosis induction of leukemic cells. Blood 2003, 101:202-209.
- [10]Laurent S, Palmisano GL, Martelli AM, Kato T, Tazzari PL, Pierri I, Clavio M, Dozin B, Balbi G, Megna M, Morabito A, Lamparelli T, Bacigalupo A, Gobbi M, Pistillo MP: CTLA-4 expressed by chemoresistant, as well as untreated, myeloid leukaemia cells can be targeted with ligands to induce apoptosis. Br J Haematol 2007, 136:597-608.
- [11]Contardi E, Palmisano GL, Tazzari PL, Martelli AM, Falà F, Fabbi M, Kato T, Lucarelli E, Donati D, Polito L, Bolognesi A, Ricci F, Salvi S, Gargaglione V, Mantero S, Alberghini M, Ferrara GB, Pistillo MP: CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer 2005, 117:538-550.
- [12]Shah KV, Chien AJ, Yee C, Moon RT: CTLA-4 is a direct target of Wnt/beta-catenin signalling and is expressed in human melanoma tumors. J Invest Dermatol 2008, 128:2870-2879.
- [13]Mao H, Zhang L, Yang Y, Zuo W, Bi Y, Gao W, Deng B, Sun J, Shao Q, Qu X: New insights of CTLA-4 into its biological function in breast cancer. Curr Cancer Drug Targets 2010, 10:728-736.
- [14]Salvi S, Fontana V, Boccardo S, Merlo DF, Margallo E, Laurent S, Morabito A, Rijavec E, Dal Bello MG, Mora M, Ratto GB, Grossi F, Truini M, Pistillo MP: Evaluation of CTLA-4 expression and relevance as a novel prognostic factor in patients with non-small cell lung cancer. Cancer Immunol Immunother 2012, 61:1463-1472.
- [15]Peggs KS, Quezada SA, Korman AJ, Allison JP: Principles and use of anti-CTLA-4 antibody in human cancer immunotherapy. Curr Opin Immunol 2006, 18:206-231.
- [16]Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010, 363:711-723.
- [17]Tarhini AA, Kirkwood JM: Tremelimumab, a fully human monoclonal IgG2 antibody against CTLA4 for the potential treatment of cancer. Curr Opin Mol Ther 2007, 9:505-514.
- [18]Leach DR, Krummel MF, Allison JP: Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 27:1734-1736.
- [19]Van Elsas A, Hurwitz AA, Allison JP: Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 1999, 190:355-366.
- [20]Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP: Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009, 206:1717-1725.
- [21]Maker AV, Attia P, Rosenberg SA: Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol 2005, 175:7746-7754.
- [22]Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W, Straus D, Samelson LE, Thompson CB, Bluestone JA: Molecular basis of T cell inactivation by CTLA-4. Science 1998, 282:2263-2266.
- [23]Paradis TJ, Floyd E, Burkwit J, Cole SH, Brunson B, Elliott E, Gilman S, Gladue RP: The anti-tumor activity of anti-CTLA-4 is mediated through its induction of IFN gamma. Cancer Immunol Immunother 2001, 50:125-133.
- [24]Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC, Puccetti P: CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 2002, 3:1097-1101.
- [25]Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P: Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 2003, 4:1206-1212.
- [26]Paust S, Lu L, McCarty N, Cantor H: Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 2004, 101:10398-403.
- [27]Ledford H: Melanoma drug wins US approval. Nature 2011, 471:561.
- [28]Keler T, Halk E, Vitale L, O’Neill T, Blanset D, Lee S, Srinivasan M, Graziano RF, Davis T, Lonberg N, Korman A: Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 2003, 171:6251-6259.
- [29]Ribas A, Hanson DC, Noe DA, Millham R, Guyot DJ, Bernstein SH, Canniff PC, Sharma A, Gomez-Navarro J: Tremelimumab (CP-675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist 2007, 12:873-883.
- [30]Kavanagh B, O’Brien S, Lee D, Hou Y, Weinberg V, Rini B, Allison JP, Small EJ, Fong L: CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood 2008, 112:1175-1183.
- [31]Carrega P, Pezzino G, Queirolo P, Bonaccorsi I, Falco M, Vita G, Pende D, Misefari A, Moretta A, Mingari MC, Moretta L, Ferlazzo G: Susceptibility of human melanoma cells to autologous natural killer (NK) cell killing: HLA-related effector mechanisms and role of unlicensed NK cells. PLoS One 2009, 4:e8132.
- [32]Pietra G, Manzini C, Vitale M, Balsamo M, Ognio E, Boitano M, Queirolo P, Moretta L, Mingari MC: Natural killer cells kill human melanoma cells with characteristics of cancer stem cells. Int Immunol 2009, 21:793-801.
- [33]Wang Z, Hu XZ, Tatake RJ, Yang SY, Zeff RA, Ferrone S: Differential effect ofhuman and mouse beta 2-microglobulin on the induction and the antigenic profileof endogenous HLA-A and -B antigens synthesized by beta 2-microglobulingene-null FO-1 melanoma cells. Cancer Res 1993, 53:4303-4309.
- [34]Chen G, Cheng Y, Zhang Z, Martinka M, Li G: Cytoplasmic Skp2 expression is increased in human melanoma and correlated with patient survival. PLoS One 2011, 28(6(2)):e17578.
- [35]Zocchi MR, Catellani S, Canevali P, Tavella S, Garuti A, Villaggio B, Zunino A, Gobbi M, Fraternali-Orcioni G, Kunkl A, Ravetti JL, Boero S, Musso A, Poggi A: High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D-ligands recognition in Hodgkin lymphomas. Blood 2012, 119:1479-1489.
- [36]Spaggiari GM, Contini P, Dondero A, Carosio R, Puppo F, Indiveri F, Zocchi MR, Poggi A: Soluble HLA class I induces NK cell apoptosis upon the engagement of killer-activating HLA class I receptors through FasL-Fas interaction. Blood 2002, 100:4098-4107.
- [37]Magistrelli G, Jeannin P, Herbault N, Benoit De Coignac A, Gauchat JF, Bonnefoy JY, Delneste Y: A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur J Immunol 1999, 29:3596-3602.
- [38]Steiner K, Moosig F, Csernok E, Selleng K, Gross WL, Fleischer B, Bröker BM: Increased expression of CTLA-4 (CD152) by T and B lymphocytes in Wegener’s granulomatosis. Clin Exp Immunol 2001, 126:143-150.
- [39]Iwanuma Y, Chen FA, Egilmez NK, Takita H, Bankert RB: Antitumor immune response of human peripheral blood lymphocytes coengrafted with tumor into severe combined immunodeficient mice. Cancer Res 1997, 57:2937-2942.
- [40]Sabel MS, Hess SD, Egilmez NK, Conway TF Jr, Chen FA, Bankert RB: CTLA-4 blockade augments human T lymphocyte-mediated suppression of lung tumor xenografts in SCID mice. Cancer Immunol Immunother 2005, 54:944-952.
PDF