期刊论文详细信息
GigaScience
Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry
Theodore Alexandrov7  Zoltan Takats6  Pieter C Dorrestein1,12  Peter Maass3  Axel Walch4  Kathrin Maedler9  Herbert Thiele2  Ferdinand von Eggeling1,11  Orlando Guntinas-Lichius1,11  Robert Goldin1,13  Michaela Aichler4  Klaus Steinhorst1,10  Stefan Schiffler1,10  Andrew Palmer7  Dennis Trede1,10  Franziska Hoffmann1,11  Anna K Mróz6  Nicole Strittmatter6  Jan Hendrik Kobarg2  Lena Hauberg-Lotte2  Michael Becker8  James S McKenzie6  Jeramie Watrous1  Kirill Veselkov6  Janina Oetjen5 
[1] Department of Medicine, Biomedical Research Facility II, University of California, San Diego, USA;Steinbeis Center SCiLS Research, Bremen, Germany;Center for Industrial Mathematics, University of Bremen, Bremen, Germany;Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Center Munich, Munich, Germany;MALDI Imaging Lab, University of Bremen, Bremen, Germany;Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK;European Molecular Biology Laboratory, Heidelberg, Germany;Bruker Daltonik GmbH, Bremen, Germany;Islet Research Lab, Center for Biomolecular Interactions, University of Bremen, Bremen, Germany;SCiLS GmbH, Bremen, Germany;Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany;Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, USA;Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
关键词: imzML;    DESI;    MALDI;    Three-dimensional;    3D imaging mass spectrometry;    Benchmark datasets;   
Others  :  1204333
DOI  :  10.1186/s13742-015-0059-4
 received in 2014-11-05, accepted in 2015-04-09,  发布年份 2015
PDF
【 摘 要 】

Background

Three-dimensional (3D) imaging mass spectrometry (MS) is an analytical chemistry technique for the 3D molecular analysis of a tissue specimen, entire organ, or microbial colonies on an agar plate. 3D-imaging MS has unique advantages over existing 3D imaging techniques, offers novel perspectives for understanding the spatial organization of biological processes, and has growing potential to be introduced into routine use in both biology and medicine. Owing to the sheer quantity of data generated, the visualization, analysis, and interpretation of 3D imaging MS data remain a significant challenge. Bioinformatics research in this field is hampered by the lack of publicly available benchmark datasets needed to evaluate and compare algorithms.

Findings

High-quality 3D imaging MS datasets from different biological systems at several labs were acquired, supplied with overview images and scripts demonstrating how to read them, and deposited into MetaboLights, an open repository for metabolomics data. 3D imaging MS data were collected from five samples using two types of 3D imaging MS. 3D matrix-assisted laser desorption/ionization imaging (MALDI) MS data were collected from murine pancreas, murine kidney, human oral squamous cell carcinoma, and interacting microbial colonies cultured in Petri dishes. 3D desorption electrospray ionization (DESI) imaging MS data were collected from a human colorectal adenocarcinoma.

Conclusions

With the aim to stimulate computational research in the field of computational 3D imaging MS, selected high-quality 3D imaging MS datasets are provided that could be used by algorithm developers as benchmark datasets.

【 授权许可】

   
2015 Oetjen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150524040531372.pdf 1166KB PDF download
【 参考文献 】
  • [1]Seeley EH, Caprioli RM. 3D imaging by mass spectrometry: a new frontier. Anal Chem. 2012; 84:2105-10.
  • [2]Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med. 2001; 7:493-6.
  • [3]Watrous JD, Alexandrov T, Dorrestein PC. The evolving field of imaging mass spectrometry and its impact on future biological research. J Mass Spectrom. 2011; 46:209-22.
  • [4]Watrous JD, Dorrestein PC. Imaging mass spectrometry in microbiology. Nat Rev Microbiol. 2011; 9:683-94.
  • [5]Stoeckli M, Staab D, Staufenbiel M, Wiederhold K-H, Signor L. Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal Biochem. 2002; 311:33-39.
  • [6]Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988; 60:2299-301.
  • [7]Karas M, Bachmann D, el Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Processes. 1987; 78:53-68.
  • [8]Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004; 306:471-3.
  • [9]Alexandrov T. MALDI imaging mass spectrometry: statistical data analysis and current computational challenges. BMC Bioinformatics. 2012; 13 Suppl 16:S11.
  • [10]Jones EA, van Remoortere A, van Zeijl RJ, Hogendoorn PC, Bovée JV, Deelder AM et al.. Multiple statistical analysis techniques corroborate intratumor heterogeneity in imaging mass spectrometry datasets of myxofibrosarcoma. PLoS One. 2011; 6: Article ID e24913
  • [11]Alexandrov T, Becker M, Guntinas-Lichius O, Ernst G, von Eggeling F. MALDI-imaging segmentation is a powerful tool for spatial functional proteomic analysis of human larynx carcinoma. J Cancer Res Clin Oncol. 2013; 139:85-95.
  • [12]Alexandrov T, Kobarg JH. Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering. Bioinformatics. 2011; 27:i230-8.
  • [13]Palmer AD, Bunch J, Styles IB. Randomized approximation methods for the efficient compression and analysis of hyperspectral data. Anal Chem. 2013; 85:5078-86.
  • [14]Schramm T, Hester A, Klinkert I, Both J-P, Heeren R, Brunelle A et al.. imzML—a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteomics. 2012; 75:5106-10.
  • [15]Oetjen J, Veselkov K, Watrous J, McKenzie JS, Becker M, Hauberg-Lotte L, et al. Supporting materials for “Benchmark datasets for 3D MALDI- and DESI-Imaging Mass Spectrometry.” GigaScience Database. 2015; http://dx.doi.org/10.5524/100131
  • [16]The HDF group: http://www.hdfgroup.org/HDF5/ (1997) Accessed 27 Mar 2015.
  • [17]Oetjen J, Aichler M, Trede D, Strehlow J, Berger J, Heldmann S et al.. MRI-compatible pipeline for three-dimensional MALDI imaging mass spectrometry using PAXgene fixation. J Proteomics. 2013; 90:52-60.
  • [18]Yang Y-L, Xu Y, Straight P, Dorrestein PC. Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol. 2009; 5:885-7.
  • [19]Watrous JD, Phelan VV, Hsu C-C, Moree WJ, Duggan BM, Alexandrov T et al.. Microbial metabolic exchange in 3D. ISME J. 2013; 7:770-80.
  • [20]Gerbig S, Golf O, Balog J, Denes J, Baranyai Z, Zarand A et al.. Analysis of colorectal adenocarcinoma tissue by desorption electrospray ionization mass spectrometric imaging. Anal Bioanal Chem. 2012; 403:2315-25.
  • [21]MALDI MSI Interest Group: Msimaging. http://www.maldi-msi.org (2011). Accessed 27 Mar 2015.
  • [22]McKenzie JS: 3D Massomics Github repository. https://github.com/jsmckenzie/3DMassomics (2014) Accessed 27 Mar 2015.
  • [23]Veselkov KA, Mirnezami R, Strittmatter N, Goldin RD, Kinross J, Speller AV et al.. Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer. Proc Natl Acad Sci U S A. 2014; 111:1216-21.
  • [24]Rohner TC, Staab D, Stoeckli M. MALDI mass spectrometric imaging of biological tissue sections. Mech Ageing Dev. 2005; 126:177-185.
  • [25]Klinkert I, Chughtai K, Ellis SR, Heeren R. Methods for full resolution data exploration and visualization for large 2D and 3D mass spectrometry imaging datasets. Int Journal Mass Specrom. 2014; 362:40-47.
  • [26]Robichaud G, Garrard KP, Barry JA, Muddiman DC. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J Am Soc Mass Spectrom. 2013; 24:718-21.
  • [27]Race AM, Stylers, IB, Bunch, J.: imzMLConverter. www.imzmlconverter.co.uk (2012) Accessed 27 Mar 2015.
  • [28]Race AM, Styles IB, Bunch J. Inclusive sharing of mass spectrometry imaging data requires a converter for all. J Proteomics. 2012; 75:5111-12.
  文献评价指标  
  下载次数:15次 浏览次数:17次