| Journal of Biological Engineering | |
| A library of mammalian effector modules for synthetic morphology | |
| Jamie A Davies2  Peter Hohenstein1  Weijia Liu2  Elise Cachat2  | |
| [1] The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK;University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK | |
| 关键词: Human embryonic kidney cells; Development; Morphogenetic effectors; Morphogenesis; Synthetic biology; Synthetic morphology; | |
| Others : 1230538 DOI : 10.1186/1754-1611-8-26 |
|
| received in 2014-06-20, accepted in 2014-10-02, 发布年份 2014 | |
【 摘 要 】
Background
In mammalian development, the formation of most tissues is achieved by a relatively small repertoire of basic morphogenetic events (e.g. cell adhesion, locomotion, apoptosis, etc.), permutated in various sequences to form different tissues. Together with cell differentiation, these mechanisms allow populations of cells to organize themselves into defined geometries and structures, as simple embryos develop into complex organisms. The control of tissue morphogenesis by populations of engineered cells is a potentially very powerful but neglected aspect of synthetic biology.
Results
We have assembled a modular library of synthetic morphogenetic driver genes to control (separately) mammalian cell adhesion, locomotion, fusion, proliferation and elective cell death. Here we describe this library and demonstrate its use in the T-REx-293 human cell line to induce each of these desired morphological behaviours on command.
Conclusions
Building on from the simple test systems described here, we want to extend engineered control of morphogenetic cell behaviour to more complex 3D structures that can inform embryologists and may, in the future, be used in surgery and regenerative medicine, making synthetic morphology a powerful tool for developmental biology and tissue engineering.
【 授权许可】
2014 Cachat et al.; licensee BioMed Central Ltd.
| Files | Size | Format | View |
|---|---|---|---|
| Figure 6. | 106KB | Image | |
| Figure 5. | 107KB | Image | |
| Figure 4. | 113KB | Image | |
| Figure 3. | 86KB | Image | |
| Figure 2. | 76KB | Image | |
| Figure 1. | 68KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Gardner TS, Cantor CR, Collins JJ: Construction of a genetic toggle switch in Escherichia coli. Nature 2000, 403(6767):339-342.
- [2]Elowitz MB, Leibler S: A synthetic oscillatory network of transcriptional regulators. Nature 2000, 403(6767):335-338.
- [3]Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD: Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006, 440(7086):940-943.
- [4]Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ: Synthetic gene networks that count. Science 2009, 324(5931):1199-1202.
- [5]Levskaya A, Weiner OD, Lim WA, Voigt CA: Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 2009, 461(7266):997-1001.
- [6]Carvalho A, Menendez DB, Senthivel VR, Zimmermann T, Diambra L, Isalan M: Genetically encoded sender–receiver system in 3D mammalian cell culture. ACS Synth Biol 2013, 3(5):264-272.
- [7]Davies JA: Synthetic morphology: prospects for engineered, self-constructing anatomies. J Anat 2008, 212(6):707-719.
- [8]Cachat E, Davies J: Application of synthetic biology to regenerative medicine. J Bioeng Biomed Sci 2011, S2:003.
- [9]Davies JA: Mechanisms of Morphogenesis. 2nd edition. London: Elsevier; 2013.
- [10]Gilbert S: Developmental Biology. 10th edition. Sunderland: Sinauer Associates; 2013.
- [11]Capasso V, Gromov M, Harel-Bellan A, Morozova N, Louise L, Colli PL: Pattern Formation in Morphogenesis: problems and mathematical issues. In Morphogenesis: Problems And Mathematical Issues. Volume 5. Berlin Heidelberg: Springer; 2013.
- [12]Davies J: Regulation, necessity, and the misinterpretation of knockouts. Bioessays 2009, 31(8):826-830.
- [13]Nagafuchi A, Shirayoshi Y, Okazaki K, Yasuda K, Takeichi M: Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 1987, 329(6137):341-343.
- [14]Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA: Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev 1994, 8(14):1613-1626.
- [15]Clancy EK, Barry C, Ciechonska M, Duncan R: Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents. Virology 2010, 397(1):119-129.
- [16]Klemke RL, Leng J, Molander R, Brooks PC, Vuori K, Cheresh DA: CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J Cell Biol 1998, 140(4):961-972.
- [17]Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993, 75(4):805-816.
- [18]Cachat E, Martin KC, Davies JA: Synthetic biology approaches for regenerative medicine. In Encyclopedia Of Molecular Cell Biology And Molecular Medicine. Weinheim: Wiley-VCH Verlag; 2013. in press
- [19]Hayflick L, Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res 1961, 25:585-621.
- [20]Camarasa MV, Galvez VM, Brison DR, Bachiller D: Optimized protocol for derivation of human embryonic stem cell lines. Stem Cell Rev 2012, 8(3):1011-1020.
- [21]Roy A, Krzykwa E, Lemieux R, Neron S: Increased efficiency of gamma-irradiated versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures. J Hematother Stem Cell Res 2001, 10(6):873-880.
- [22]Zhou D, Liu T, Zhou X, Lu G: Three key variables involved in feeder preparation for the maintenance of human embryonic stem cells. Cell Biol Int 2009, 33(7):796-800.
- [23]Gopinathan L, Ratnacaram CK, Kaldis P: Established and novel Cdk/cyclin complexes regulating the cell cycle and development. Results Probl Cell Differ 2011, 53:365-389.
- [24]Susaki E, Nakayama KI: Functional similarities and uniqueness of p27 and p57: insight from a knock-in mouse model. Cell Cycle 2009, 8(16):2497-2501.
- [25]Borriello A, Cucciolla V, Oliva A, Zappia V, Della Ragione F: p27Kip1 metabolism: a fascinating labyrinth. Cell Cycle 2007, 6(9):1053-1061.
- [26]Coucouvanis E, Martin GR: Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 1995, 83(2):279-287.
- [27]Zakeri Z, Quaglino D, Ahuja HS: Apoptotic cell death in the mouse limb and its suppression in the hammertoe mutant. Dev Biol 1994, 165(1):294-297.
- [28]Hamburger V: The effects of wing bud extirpation on the development of the central nervous system in chick embryos. J Exp Zool 1934, 68(3):449-494.
- [29]Raff MC: Social controls on cell survival and cell death. Nature 1992, 356(6368):397-400.
- [30]Imre G, Heering J, Takeda AN, Husmann M, Thiede B, Zu Heringdorf DM, Green DR, van der Goot FG, Sinha B, Dotsch V, Rajalingam K: Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis. EMBO J 2012, 31(11):2615-2628.
- [31]Bouchier-Hayes L, Green DR: Caspase-2: the orphan caspase. Cell Death Differ 2012, 19(1):51-57.
- [32]Puccini J, Dorstyn L, Kumar S: Caspase-2 as a tumour suppressor. Cell Death Differ 2013, 20(9):1133-1139.
- [33]Volk T, Geiger B: A 135-kd membrane protein of intercellular adherens junctions. EMBO J 1984, 3(10):2249-2260.
- [34]van Roy F, Berx G: The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 2008, 65(23):3756-3788.
- [35]Cavallaro U, Christofori G: Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 2004, 4(2):118-132.
- [36]Schejter ED, Baylies MK: Born to run: creating the muscle fiber. Curr Opin Cell Biol 2010, 22(5):566-574.
- [37]Salsman J, Top D, Barry C, Duncan R: A virus-encoded cell-cell fusion machine dependent on surrogate adhesins. PLoS Pathog 2008, 4(3):e1000016.
- [38]Salsman J, Top D, Boutilier J, Duncan R: Extensive syncytium formation mediated by the reovirus FAST proteins triggers apoptosis-induced membrane instability. J Virol 2005, 79(13):8090-8100.
- [39]Ridley AJ: Life at the leading edge. Cell 2011, 145(7):1012-1022.
- [40]Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR: Cell migration: integrating signals from front to back. Science 2003, 302(5651):1704-1709.
- [41]Bradley WD, Koleske AJ: Regulation of cell migration and morphogenesis by Abl-family kinases: emerging mechanisms and physiological contexts. J Cell Sci 2009, 122(Pt 19):3441-3454.
- [42]Lamorte L, Rodrigues S, Sangwan V, Turner CE, Park M: Crk associates with a multimolecular Paxillin/GIT2/beta-PIX complex and promotes Rac-dependent relocalization of Paxillin to focal contacts. Mol Biol Cell 2003, 14(7):2818-2831.
- [43]Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT: Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 2010, 5(5):e10611.
- [44]Norrman K, Fischer Y, Bonnamy B, Wolfhagen Sand F, Ravassard P, Semb H: Quantitative comparison of constitutive promoters in human ES cells. PLoS One 2010, 5(8):e12413.
- [45]Chung S, Andersson T, Sonntag KC, Bjorklund L, Isacson O, Kim KS: Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 2002, 20(2):139-145.
- [46]Deans TL, Cantor CR, Collins JJ: A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 2007, 130(2):363-372.
- [47]Wong ET, Ngoi SM, Lee CG: Improved co-expression of multiple genes in vectors containing internal ribosome entry sites (IRESes) from human genes. Gene Ther 2002, 9(5):337-344.
- [48]Kramer BP, Fischer C, Fussenegger M: BioLogic gates enable logical transcription control in mammalian cells. Biotechnol Bioeng 2004, 87(4):478-484.
- [49]Auslander S, Auslander D, Muller M, Wieland M, Fussenegger M: Programmable single-cell mammalian biocomputers. Nature 2012, 487(7405):123-127.
- [50]Pan XP, Li LJ: Advances in cell sources of hepatocytes for bioartificial liver. Hepatobiliary Pancreat Dis Int 2012, 11(6):594-605.
- [51]Schoonen WG, Westerink WM, Horbach GJ: High-throughput screening for analysis of in vitro toxicity. EXS 2009, 99:401-452.
- [52]McKim JM Jr: Building a tiered approach to in vitro predictive toxicity screening: a focus on assays with in vivo relevance. Comb Chem High Throughput Screen 2010, 13(2):188-206.
- [53]Nose A, Nagafuchi A, Takeichi M: Expressed recombinant cadherins mediate cell sorting in model systems. Cell 1988, 54(7):993-1001.
- [54]Van de Craen M, Vandenabeele P, Declercq W, Van den Brande I, Van Loo G, Molemans F, Schotte P, Van Criekinge W, Beyaert R, Fiers W: Characterization of seven murine caspase family members. FEBS Lett 1997, 403(1):61-69.
- [55]Vlach J, Hennecke S, Alevizopoulos K, Conti D, Amati B: Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J 1996, 15(23):6595-6604.
- [56]Roure A, Rothbacher U, Robin F, Kalmar E, Ferone G, Lamy C, Missero C, Mueller F, Lemaire P: A multicassette Gateway vector set for high throughput and comparative analyses in ciona and vertebrate embryos. PLoS One 2007, 2(9):e916.